|
[1] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell Syst. Tech. J., vol. 46, no. 6, pp. 1288-1295, Jul.-Aug. 1967. [2] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, vol. 11, no. 6, pp. 28-36, Jun. 2008. [3] J. S. Vetter and S. Mittal, "Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing," Comput. Sci. Eng., vol. 17, no. 2, pp. 73-82, Mar.-Apr. 2015. [4] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Mater., vol. 6, no. 11, pp. 833-840, Nov. 2007. [5] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, Jul. 2009. [6] R. Waser, "Electrochemical and thermochemical memories," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 289-292. [7] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Lett., vol. 9, no. 4, pp. 1636-1643, Mar. 2009. [8] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, "A unified physical model of switching behavior in oxide-based RRAM," in Proc. VLSI Symp. Tech. Dig., Honolulu, HI, USA, Jun. 2008, pp. 100-101. [9] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 1-4. [10] Y. Hirose and H. Hirose, "Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films," J. Appl. Phys., vol. 47, no. 6, pp. 2767-2772, Jun. 1976. [11] S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, and Z. Yu, "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory," Phys. Chem. Chem. Phys., vol. 17, no. 14, pp. 8627-8632, Jan. 2015. [12] Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Commun., vol. 5, pp. 4232-4241, Jun. 2014. [13] S. Menzel, P. Kaupmann, and R. Waser, "Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations," Nanoscale, vol. 7, no. 29, pp. 12673-12681, Jun. 2015. [14] L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G. M. Rignanese, C. Detavernier, S. Clima, Y. Y. Chen, A. Fantini, B. Govoreanu, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, "Field-driven ultrafast sub-ns programming in W\Al2O3\TiCuTe-based 1T1R CBRAM system," in Proc. VLSI Symp. Technol., Honolulu, HI, USA, Jun. 2012, pp. 69-70. [15] D. Kamalanathan, U. Russo, D. Ielmini, and M. N. Kozicki, "Voltage-Driven On-Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory," IEEE Electron Device Lett., vol. 30, no. 5, pp. 553-555, Apr. 2009. [16] L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, "Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells," Appl. Phys. Lett., vol. 99, no. 5, pp. 053502-1-053502-3, Aug. 2011. [17] K. Toshio, N. Kenji, and H. Hideo, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 044305, Sep. 2010. [18] E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C. N. Carvalho, and R. Martins, "High field-effect mobility zinc oxide thin film transistors produced at room temperature," J. Non·Cryst. Solids, vol. 338, pp. 806-809, Jun. 2004. [19] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Phys. Rev. B, vol. 75, no. 3, pp. 035212-1-035212-5, Jan. 2007. [20] S. J. Kang, "SSIM Preservation-Based Backlight Dimming," J. Display Technol., vol. 10, no. 4, pp. 247-250, Apr. 2014. [21] Y. Li, P. Chu, J. Liu, and S. Du, "A Novel Partitioned Light Guide Backlight LCD for Mobile Devices and Local Dimming Method With Nonuniform Backlight Compensation," J. Display Technol., vol. 10, no. 4, pp. 321-328, Apr. 2014. [22] L. Corradini and G. Spiazzi, "A High-Frequency Digitally Controlled LED Driver for Automotive Applications With Fast Dimming Capabilities," IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6648-6659, Dec. 2014. [23] S. C. Hsia, M. H. Sheu, J. R. C. Chien, and S. K. Wang, "High-Performance Local Dimming Algorithm and Its Hardware Implementation for LCD Backlight," J. Display Technol., vol. 9, no. 7, pp. 527-535, Jul. 2013. [24] H. Hasebe and S. Kobayashi, "A full-color field-sequential LCD using modulated backlight," in Proc. SID Symp. Dig. Tech. Papers, May 1985, pp. 81-83. [25] F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, "Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs," J. Soc. Inf. Display, vol. 17, no. 3, pp. 221-228, Mar. 2009. [26] Y. Kataoka, H. Imai, Y. Nakata, T. Daitoh, T. M. N. Kimura, T. Nakano, Y. Mizuno, T. Oketani, M. Takahashi, M. Tsubuku, H. Miyake, T. I. Y. Hirakata, J. Koyama, S. Yamazaki, J. Koezuka, and K. Okazaki, "Development of IGZO-TFT and Creation of New Devices Using IGZO-TFT," in Proc. SID Symp. Dig. Tech. Papers, Vancouver, BC, Canada, Jun. 2013, pp. 771-774. [27] L. W. Chu, P. T. Liu, and M. D. Ker, "Design of Analog Pixel Memory for Low Power Application in TFT-LCDs," J. Display Technol., vol. 7, no. 2, pp. 62-69, Feb. 2011. [28] S. H. Lee, J. Kim, S. H. Yoon, K. A. Kim, S. M. Yoon, C. Byun, C. S. Hwang, G. H. Kim, K. I. Cho, and S. W. Lee, "Pixel Architecture for Low-Power Liquid Crystal Display Comprising Oxide and Ferroelectric Memory Thin Film Transistors," IEEE Electron Device Lett., vol. 36, no. 6, pp. 585-587, Jun. 2015. [29] J. C. Lee and J. Y. Jeong, "High Speed, Small Area, Reliable, LTPS TFT-based Level Shifter for System-On-Panel Technology," in Proc. IEEE ICICDT, Padova, Italy, May 2006, pp. 1-4. [30] N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, and Y. Hwang, "Implementation of 240Hz 55-inch Ultra Definition LCD Driven by a-IGZO Semiconductor TFT with Copper Signal Lines," in Proc. SID Symp. Dig. Tech. Papers, Boston, MA, USA, Jun. 2012, pp. 784-787. [31] W.-J. Nam, J.-S. Shim, H.-J. Shin, J.-M. Kim, W.-S. Ha, K.-H. Park, H.-G. Kim, B.-S. Kim, C.-H. Oh, B.-C. Ahn, B.-C. Kim, and S.-Y. Cha, "55-inch OLED TV using InGaZnO TFTs with WRGB Pixel Design," in Proc. SID Symp. Dig. Tech. Papers, Vancouver, BC, Canada, Jun. 2013, pp. 243-246. [32] Sharp Corporation. (2016, Sep.). Sharp at CEATEC Japan 2016 [Online]. Available: http://www.sharp-world.com/corporate/news/160926.html [33] S. Yamazaki and T. Tsutsui, "Physics and Technology of CFigsrystalline Oxide Semiconductor CAAC-IGZO: Application to Displays," ed: Wiley SID Series in Display Technology, 2016. [34] IHS Markit. (2014, Aug.). Cu electrode, the key to UHD LCD technology [Online]. Available: https://technology.ihs.com/508799/cu-electrodes-for-uhd-tft-lcd-history-of-cu-electrode-application-employing-cu-electrodes-by-taiwanese-and-chinese-lcd-makers [35] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal-Oxide RRAM," Proc. IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012. [36] J. R. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, C. Gopalan, B. Guichet, S. Hsu, D. Kamalanathan, D. Kim, F. Koushan, M. Kwan, K. Law, D. Lewis, Y. Ma, V. McCaffrey, S. Park, S. Puthenthermadam, E. Runnion, J. Sanchez, J. Shields, K. Tsai, A. Tysdal, D. Wang, R. Williams, M. N. Kozicki, J. Wang, V. Gopinath, S. Hollmer, and M. V. Buskirk, "Conductive-bridge memory (CBRAM) with excellent high-temperature retention," in Proc. IEDM Tech. Dig., Washington, DC, USA, Dec. 2013, pp. 30.1.1-30.1.4. [37] A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: Applicability of Bloch-Grüneisen theorem," Phys. Rev. B, vol. 74, no. 3, pp. 035426-1-035426-8, Jul. 2006. [38] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt," Appl. Phys. Lett., vol. 93, no. 22, pp. 223506-1-223506-3, Dec. 2008. [39] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, "Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance," IEEE Electron Device Lett., vol. 32, no. 10, pp. 1442-1444, Oct. 2011. [40] B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, "10×10nm2 Hf/HfOX crossbar resistive RAM with excellent performance, reliability and low-energy operation," in Proc. IEDM Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 31.6.1-31.6.4. [41] X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, "Resistive Switching in CeOX Films for Nonvolatile Memory Application," IEEE Electron Device Lett., vol. 30, no. 4, pp. 334-336, Apr. 2009. [42] M. K. Yang, J.-W. Park, T. K. Ko, and J.-K. Lee, "Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices," Appl. Phys. Lett., vol. 95, no. 4, pp. 042105-1-042105-3, Jul. 2009. [43] S. Yu, X. Guan, and H.-S. P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model," Appl. Phys. Lett., vol. 99, no. 6, pp. 063507-1-063507-3, Aug. 2011. [44] S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, "Impact of the Mechanical Stress on Switching Characteristics of Electrochemical Resistive Memory," Adv. Mater., vol. 26, no. 23, pp. 3885-3892, Jun. 2014. [45] Y. Liu, H. Kim, J.-J. Wang, H. Li, and R. G. Gordon, "Effects of Low Temperature O2 Treatment on the Electrical Characteristics of Amorphous LaAlO3 Films by Atomic Layer Deposition," ECS Trans., vol. 16, no. 5, pp. 471-478, Oct. 2008. [46] C. Y. Chien, "Study on Integration of a-InGaZnO Based Resistive Random Access Memory and Thin-film Transistor," M.S. thesis, Inst. of Electro-Opt. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, 2016. [47] G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. D. Salvo, and L. Perniola, "Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2014, pp. 6.1.1-6.1.4. [48] K.-C. Kwon, M.-J. Song, K.-H. Kwon, H.-V. Jeoung, D.-W. Kim, G.-S. Lee, J.-P. Hong, and J.-G. Park, "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor," J. Mater. Chem. C, vol. 3, no. 37, pp. 9540-9550, Jul. 2015. [49] K.-S. Kim, S.-W. Lee, S.-M. Oh, and W.-J. Cho, "Development of annealing process for solution-derived high performance InGaZnO thin-film transistors," Mater. Sci. Eng. B, vol. 178, no. 12, pp. 811-815, Jul. 2013. [50] U. Chand, C.-Y. Huang, D. Kumar, and T.-Y. Tseng, "Metal induced crystallized poly-Si-based conductive bridge resistive switching memory device with one transistor and one resistor architecture," Appl. Phys. Lett., vol. 107, no. 20, pp. 203502-1-203502-5, Nov. 2015. [51] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, "Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance," Appl. Phys. Lett., vol. 93, no. 3, pp. 033506-1-033506-3, Jul. 2008. [52] S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Appl. Phys. Lett., vol. 76, no. 19, pp. 2749-2751, May 2000.
|