(3.237.97.64) 您好!臺灣時間:2021/03/03 04:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張惟喬
研究生(外文):Chang, Wei-Chiao
論文名稱:非晶態氧化銦鎵鋅應用於銅導電橋式記憶體之特性研究
論文名稱(外文):Study on a-InGaZnO-Based Copper Conductive-Bridging Random Access Memory
指導教授:劉柏村劉柏村引用關係戴亞翔
指導教授(外文):Liu, Po-TsunTai, Ya-Hsiang
口試委員:謝宗雍連振炘冉曉雯
口試委員(外文):Hsieh, Tsung-EongLien, Chen-hsinZan, Hsiao-Wen
口試日期:2017-09-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:67
中文關鍵詞:銅導電橋式記憶體非晶態氧化銦鎵鋅金屬氧化還原機制像素內嵌式記憶體
外文關鍵詞:CBRAMECMIGZOMemory-in-pixel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 I
Abstract III
Acknowledgement (誌謝) V
Table of contents VI
Figure captions IX
Table captions XIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Resistive random-access memory (ReRAM) 1
1.3 Switching mechanisms of ReRAM 2
1.4 Introduction to CBRAM 4
1.5 Amorphous indium– gallium–zinc oxide (a-IGZO) 6
1.6 Memory-in-pixel (MIP) 7
1.7 Motivations 7
1.8 Organization of the thesis 8
Chapter 2 Electrical conduction phenomena 16
2.1 Electrical characteristics of CBRAM 16
2.1.1 Forming/set/reset process 16
2.1.2 Operation mode 16
2.1.3 ON-OFF ratio 17
2.1.4 Retention 17
2.1.5 Endurance 17
2.1.6 Operation speed 18
Chapter 3 Experimental process and details 19
3.1 Si substrates cleaning 19
3.2 Preparation of a-IGZO CBRAM 19
3.3 Electrical measurements and material analyses 20
3.3.1 DC sweep measurement 21
3.3.2 Endurance test 21
3.3.3 Retention test 22
3.3.4 Temperature-dependent LRS test 22
3.3.5 Transmission electron microscopy (TEM) 22
3.3.6 Energy dispersive x-ray spectrometry (EDS) 23
3.3.7 X-ray photoelectron spectroscopy (XPS) 24
Chapter 4 Results and discussion 29
4.1 The resistive switching mechanism of a-IGZO CBRAM 29
4.1.1 Electrical properties of Cu/TiW/IGZO/Al2O3/Pt device 29
4.1.2 TEM and EDS line-scan analysis 29
4.1.3 Temperature-dependent LRS test 30
4.2 Electrical characteristics of Cu/TiW/IGZO/Al2O3/Pt bi-layer structure 31
4.2.1 Comparison of electrical properties of Cu/TiW/IGZO/Al2O3/Pt bi-layer structure and Cu/TiW/IGZO/Pt single layer structure 31
4.2.2 Electrical properties of IGZO CBRAM with different Al2O3 thicknesses 32
4.2.3 Electrical properties of IGZO CBRAM with different TiW thicknesses 33
4.2.4 Influence of cell size on electrical properties of IGZO CBRAMs 34
4.2.5 Influence of compliance current on endurance 34
4.2.6 Electrical properties of IGZO CBRAM prepared at different oxygen partial pressures 35
4.2.7 Post-annealing treatment on a-IGZO CBRAM 37
Chapter 5 Conclusions and future work 59
5.1 Conclusions 59
5.2 Future work 60
References 61
Vita 67
[1] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell Syst. Tech. J., vol. 46, no. 6, pp. 1288-1295, Jul.-Aug. 1967.
[2] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, vol. 11, no. 6, pp. 28-36, Jun. 2008.
[3] J. S. Vetter and S. Mittal, "Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing," Comput. Sci. Eng., vol. 17, no. 2, pp. 73-82, Mar.-Apr. 2015.
[4] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Mater., vol. 6, no. 11, pp. 833-840, Nov. 2007.
[5] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, Jul. 2009.
[6] R. Waser, "Electrochemical and thermochemical memories," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 289-292.
[7] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Lett., vol. 9, no. 4, pp. 1636-1643, Mar. 2009.
[8] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, "A unified physical model of switching behavior in oxide-based RRAM," in Proc. VLSI Symp. Tech. Dig., Honolulu, HI, USA, Jun. 2008, pp. 100-101.
[9] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 1-4.
[10] Y. Hirose and H. Hirose, "Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films," J. Appl. Phys., vol. 47, no. 6, pp. 2767-2772, Jun. 1976.
[11] S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, and Z. Yu, "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory," Phys. Chem. Chem. Phys., vol. 17, no. 14, pp. 8627-8632, Jan. 2015.
[12] Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Commun., vol. 5, pp. 4232-4241, Jun. 2014.
[13] S. Menzel, P. Kaupmann, and R. Waser, "Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations," Nanoscale, vol. 7, no. 29, pp. 12673-12681, Jun. 2015.
[14] L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G. M. Rignanese, C. Detavernier, S. Clima, Y. Y. Chen, A. Fantini, B. Govoreanu, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, "Field-driven ultrafast sub-ns programming in W\Al2O3\TiCuTe-based 1T1R CBRAM system," in Proc. VLSI Symp. Technol., Honolulu, HI, USA, Jun. 2012, pp. 69-70.
[15] D. Kamalanathan, U. Russo, D. Ielmini, and M. N. Kozicki, "Voltage-Driven On-Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory," IEEE Electron Device Lett., vol. 30, no. 5, pp. 553-555, Apr. 2009.
[16] L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, "Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells," Appl. Phys. Lett., vol. 99, no. 5, pp. 053502-1-053502-3, Aug. 2011.
[17] K. Toshio, N. Kenji, and H. Hideo, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 044305, Sep. 2010.
[18] E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C. N. Carvalho, and R. Martins, "High field-effect mobility zinc oxide thin film transistors produced at room temperature," J. Non·Cryst. Solids, vol. 338, pp. 806-809, Jun. 2004.
[19] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Phys. Rev. B, vol. 75, no. 3, pp. 035212-1-035212-5, Jan. 2007.
[20] S. J. Kang, "SSIM Preservation-Based Backlight Dimming," J. Display Technol., vol. 10, no. 4, pp. 247-250, Apr. 2014.
[21] Y. Li, P. Chu, J. Liu, and S. Du, "A Novel Partitioned Light Guide Backlight LCD for Mobile Devices and Local Dimming Method With Nonuniform Backlight Compensation," J. Display Technol., vol. 10, no. 4, pp. 321-328, Apr. 2014.
[22] L. Corradini and G. Spiazzi, "A High-Frequency Digitally Controlled LED Driver for Automotive Applications With Fast Dimming Capabilities," IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6648-6659, Dec. 2014.
[23] S. C. Hsia, M. H. Sheu, J. R. C. Chien, and S. K. Wang, "High-Performance Local Dimming Algorithm and Its Hardware Implementation for LCD Backlight," J. Display Technol., vol. 9, no. 7, pp. 527-535, Jul. 2013.
[24] H. Hasebe and S. Kobayashi, "A full-color field-sequential LCD using modulated backlight," in Proc. SID Symp. Dig. Tech. Papers, May 1985, pp. 81-83.
[25] F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, "Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs," J. Soc. Inf. Display, vol. 17, no. 3, pp. 221-228, Mar. 2009.
[26] Y. Kataoka, H. Imai, Y. Nakata, T. Daitoh, T. M. N. Kimura, T. Nakano, Y. Mizuno, T. Oketani, M. Takahashi, M. Tsubuku, H. Miyake, T. I. Y. Hirakata, J. Koyama, S. Yamazaki, J. Koezuka, and K. Okazaki, "Development of IGZO-TFT and Creation of New Devices Using IGZO-TFT," in Proc. SID Symp. Dig. Tech. Papers, Vancouver, BC, Canada, Jun. 2013, pp. 771-774.
[27] L. W. Chu, P. T. Liu, and M. D. Ker, "Design of Analog Pixel Memory for Low Power Application in TFT-LCDs," J. Display Technol., vol. 7, no. 2, pp. 62-69, Feb. 2011.
[28] S. H. Lee, J. Kim, S. H. Yoon, K. A. Kim, S. M. Yoon, C. Byun, C. S. Hwang, G. H. Kim, K. I. Cho, and S. W. Lee, "Pixel Architecture for Low-Power Liquid Crystal Display Comprising Oxide and Ferroelectric Memory Thin Film Transistors," IEEE Electron Device Lett., vol. 36, no. 6, pp. 585-587, Jun. 2015.
[29] J. C. Lee and J. Y. Jeong, "High Speed, Small Area, Reliable, LTPS TFT-based Level Shifter for System-On-Panel Technology," in Proc. IEEE ICICDT, Padova, Italy, May 2006, pp. 1-4.
[30] N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, and Y. Hwang, "Implementation of 240Hz 55-inch Ultra Definition LCD Driven by a-IGZO Semiconductor TFT with Copper Signal Lines," in Proc. SID Symp. Dig. Tech. Papers, Boston, MA, USA, Jun. 2012, pp. 784-787.
[31] W.-J. Nam, J.-S. Shim, H.-J. Shin, J.-M. Kim, W.-S. Ha, K.-H. Park, H.-G. Kim, B.-S. Kim, C.-H. Oh, B.-C. Ahn, B.-C. Kim, and S.-Y. Cha, "55-inch OLED TV using InGaZnO TFTs with WRGB Pixel Design," in Proc. SID Symp. Dig. Tech. Papers, Vancouver, BC, Canada, Jun. 2013, pp. 243-246.
[32] Sharp Corporation. (2016, Sep.). Sharp at CEATEC Japan 2016 [Online]. Available: http://www.sharp-world.com/corporate/news/160926.html
[33] S. Yamazaki and T. Tsutsui, "Physics and Technology of CFigsrystalline Oxide Semiconductor CAAC-IGZO: Application to Displays," ed: Wiley SID Series in Display Technology, 2016.
[34] IHS Markit. (2014, Aug.). Cu electrode, the key to UHD LCD technology [Online]. Available: https://technology.ihs.com/508799/cu-electrodes-for-uhd-tft-lcd-history-of-cu-electrode-application-employing-cu-electrodes-by-taiwanese-and-chinese-lcd-makers
[35] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal-Oxide RRAM," Proc. IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012.
[36] J. R. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, C. Gopalan, B. Guichet, S. Hsu, D. Kamalanathan, D. Kim, F. Koushan, M. Kwan, K. Law, D. Lewis, Y. Ma, V. McCaffrey, S. Park, S. Puthenthermadam, E. Runnion, J. Sanchez, J. Shields, K. Tsai, A. Tysdal, D. Wang, R. Williams, M. N. Kozicki, J. Wang, V. Gopinath, S. Hollmer, and M. V. Buskirk, "Conductive-bridge memory (CBRAM) with excellent high-temperature retention," in Proc. IEDM Tech. Dig., Washington, DC, USA, Dec. 2013, pp. 30.1.1-30.1.4.
[37] A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: Applicability of Bloch-Grüneisen theorem," Phys. Rev. B, vol. 74, no. 3, pp. 035426-1-035426-8, Jul. 2006.
[38] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt," Appl. Phys. Lett., vol. 93, no. 22, pp. 223506-1-223506-3, Dec. 2008.
[39] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, "Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance," IEEE Electron Device Lett., vol. 32, no. 10, pp. 1442-1444, Oct. 2011.
[40] B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, "10×10nm2 Hf/HfOX crossbar resistive RAM with excellent performance, reliability and low-energy operation," in Proc. IEDM Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 31.6.1-31.6.4.
[41] X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, "Resistive Switching in CeOX Films for Nonvolatile Memory Application," IEEE Electron Device Lett., vol. 30, no. 4, pp. 334-336, Apr. 2009.
[42] M. K. Yang, J.-W. Park, T. K. Ko, and J.-K. Lee, "Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices," Appl. Phys. Lett., vol. 95, no. 4, pp. 042105-1-042105-3, Jul. 2009.
[43] S. Yu, X. Guan, and H.-S. P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model," Appl. Phys. Lett., vol. 99, no. 6, pp. 063507-1-063507-3, Aug. 2011.
[44] S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, "Impact of the Mechanical Stress on Switching Characteristics of Electrochemical Resistive Memory," Adv. Mater., vol. 26, no. 23, pp. 3885-3892, Jun. 2014.
[45] Y. Liu, H. Kim, J.-J. Wang, H. Li, and R. G. Gordon, "Effects of Low Temperature O2 Treatment on the Electrical Characteristics of Amorphous LaAlO3 Films by Atomic Layer Deposition," ECS Trans., vol. 16, no. 5, pp. 471-478, Oct. 2008.
[46] C. Y. Chien, "Study on Integration of a-InGaZnO Based Resistive Random Access Memory and Thin-film Transistor," M.S. thesis, Inst. of Electro-Opt. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, 2016.
[47] G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. D. Salvo, and L. Perniola, "Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2014, pp. 6.1.1-6.1.4.
[48] K.-C. Kwon, M.-J. Song, K.-H. Kwon, H.-V. Jeoung, D.-W. Kim, G.-S. Lee, J.-P. Hong, and J.-G. Park, "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor," J. Mater. Chem. C, vol. 3, no. 37, pp. 9540-9550, Jul. 2015.
[49] K.-S. Kim, S.-W. Lee, S.-M. Oh, and W.-J. Cho, "Development of annealing process for solution-derived high performance InGaZnO thin-film transistors," Mater. Sci. Eng. B, vol. 178, no. 12, pp. 811-815, Jul. 2013.
[50] U. Chand, C.-Y. Huang, D. Kumar, and T.-Y. Tseng, "Metal induced crystallized poly-Si-based conductive bridge resistive switching memory device with one transistor and one resistor architecture," Appl. Phys. Lett., vol. 107, no. 20, pp. 203502-1-203502-5, Nov. 2015.
[51] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, "Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance," Appl. Phys. Lett., vol. 93, no. 3, pp. 033506-1-033506-3, Jul. 2008.
[52] S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Appl. Phys. Lett., vol. 76, no. 19, pp. 2749-2751, May 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔