(3.236.175.108) 您好!臺灣時間:2021/02/28 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃千倫
研究生(外文):Huang, Chien-Lun
論文名稱:以奈米銅粒子製作表面電漿增益之有機高分子光伏元件
論文名稱(外文):Copper Nanoparticles for Plasmonic-Enhanced Organic Polymer Photovoltaic Devices
指導教授:陳方中陳方中引用關係林怡欣林怡欣引用關係
指導教授(外文):Chen, Fang-ChungLin, Yi-Hsin
口試委員:陳政寰高宗聖朱治偉
口試委員(外文):Chen, Cheng-HuanKao, Tsung-ShengChu, Chih-Wei
口試日期:2017-10-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:表面電漿共振效應奈米金屬粒子奈米銅粒子有機光伏元件
外文關鍵詞:Surface Plasmon ResonanceMetal NanoparticlesCopper nanoparticlesOrganic Photovoltaic Devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在研究利用奈米銅粒子製作表面電漿增益之有機光伏元件。研究主要分成兩部分,第一部分為利用氧化還原反應合成奈米銅粒子,經實驗結果比較後,選擇最佳的氯化銅濃度為0.01 M,合成出來的奈米銅粒子經過濾處理後,可以得到粒徑大小約為200 nm的奈米銅粒子。第二部分為應用奈米銅粒子於製作表面電漿增益之有機光伏元件,使用主動層材料為PBDTTT-EFT:PC71BM之元件,在摻入奈米銅粒子後,元件的電性表現會因為奈米銅粒子誘導之表面電漿效應而有大幅提升,在AM 1.5G的太陽光照射下,能量轉換效率可達6.82%,短路電流密度、填充因子和開路電壓,分別為13.34 mA/cm2、 0.65和0.79 V。另一方面,使用室內光源進行量測時,摻有奈米銅粒子的元件,其最高能量轉換效率可達14.31%。進一步比較元件吸收光譜及外部量子效率的增益波段,可以發現該波段與奈米銅粒子引發之表面電漿共振效應吻合,因此我們可以確認元件電性表現的提升是因為奈米銅粒子引發之表面電漿共振效應所導致。
This study aims at producing surface plasmon enhanced organic photovoltaic devices using copper nanoparticles. The research is divided into two parts. The first part focus on the synthesis of copper nanoparticles(CuNPs) by a redox reaction. Based on the experimental results, the optimized concentration of copper chloride was 0.01 M. After the synthetic reaction and proper filtration, the CuNPs, which exhibited an average particle size of 200 nm, could be generated. The second part is the applying copper nanoparticles to produce surface plasmon enhanced organic photovoltaic devices. The active layer was a blend of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTTT-EFT) and [6,6]-Phenyl-C71-butyric acid methyl ester (PC71BM). After the incorporation of CuNPs, the electrical characterization was dramatically improved owing to the surface plasmon resonance induced by the CuNPs. The energy conversion efficiency could reach 6.82% under one sun illumination; the short-circuit current density, fill-factor, and open-circuit voltage were 13.34 mA/cm2, 0.65, and 0.79 V, respectively. On the other hand, under indoor light conditions, the highest energy conversion efficiency of the devices prepared with CuNPs could reach 14.31%. In addition, comparison of absorption spectrum of the device and its spectrum of external quantum efficiency well matched to the surface plasmon resonance band of the CuNPs. Therefore, we confirm that the improved electrical characterization is attributable to the surface plasmon resonance induced by the CuNPs.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 有機太陽能的發展沿革 2
1.2.1 太陽能電池的起源 2
1.2.2 有機太陽能電池的發展 2
1.3 有機太陽能電池工作原理 6
1.4 有機太陽能電池電性分析 8
1.5 等效電路解析 12
1.6 太陽光光譜 14
1.7 表面電漿共振效應(Surface Plasmon Resonance) 16
1.8 研究動機 19
第二章 實驗架構 20
2.1 實驗材料 20
2.2 實驗儀器 25
第三章 實驗結果 33
3.1 奈米銅粒子的合成與分析 33
3.1.1 奈米銅粒子的合成 33
3.1.2 奈米銅粒子的特性分析 33
3.2 元件製作流程 38
3.3 P3HT:PC61BM元件 43
3.4 PBDTTT-EFT:PC71BM元件 47
3.4.1 PBDTTT-EFT:PC71BM標準元件 47
3.4.2 PBDTTT-EFT:PC71BM元件加上奈米銅粒子之結果 50
3.5 室內光源 55
3.5.1 室內光源量測電性結果 55
3.5.2 室內光源量測結果討論與分析 60
3.6 吸收光譜及AFM 65
3.6.1吸收光譜(UV/Vis) 65
3.6.2 AFM 67
3.7 暫態光電壓及暫態光電流 69
3.7.1 暫態光電壓 69
3.7.2 暫態光電流 70
第四章 結論及未來展望 71
第五章 參考文獻 73
[1] C. Battaglia, A. Cuevas, and S. De Wolf, "High-efficiency crystalline silicon solar cells: status and perspectives," Energy Environ. Sci., vol. 9, no. 5, pp. 1552-1576, 2016.
[2] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes," Applied Physics Letters, vol. 92, no. 26, p. 263302, 2008.
[3] D. Vak et al., "Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation," Applied Physics Letters, vol. 91, no. 8, p. 081102, 2007.
[4] S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim, "Efficient Polymer Solar Cells Fabricated by Simple Brush Painting," Advanced Materials, vol. 19, no. 24, pp. 4410-4415, 2007.
[5] F. C. Krebs, H. Spanggard, T. Kjær, M. Biancardo, and J. Alstrup, "Large area plastic solar cell modules," Materials Science and Engineering: B, vol. 138, no. 2, pp. 106-111, 2007.
[6] Y. Galagan et al., "ITO-free flexible organic solar cells with printed current collecting grids," Solar Energy Materials and Solar Cells, vol. 95, no. 5, pp. 1339-1343, 2011/05/01/ 2011.
[7] P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," Journal of Applied Physics, vol. 93, no. 7, pp. 3693-3723, 2003/04/01 2003.
[8] G. Lanzani, "Materials for bioelectronics: Organic electronics meets biology," Nat Mater, News and Views vol. 13, no. 8, pp. 775-776, 08//print 2014.
[9] Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, "Synthesis of Conjugated Polymers for Organic Solar Cell Applications," Chemical Reviews, vol. 109, no. 11, pp. 5868-5923, 2009/11/11 2009.
[10] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
[11] H. Kallmann and M. Pope, "Photovoltaic Effect in Organic Crystals," The Journal of Chemical Physics, vol. 30, no. 2, pp. 585-586, 1959.
[12] A. K. Ghosh and T. Feng, "Merocyanine organic solar cells," Journal of Applied Physics, vol. 49, no. 12, pp. 5982-5989, 1978.
[13] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986.
[14] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, no. 6042, pp. 162-163, 1985.
[15] S. Yoo, B. Domercq, and B. Kippelen, "Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions," Applied Physics Letters, vol. 85, no. 22, pp. 5427-5429, 2004.
[16] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell," Applied Physics Letters, vol. 68, no. 22, pp. 3120-3122, 1996.
[17] G. Yu, C. Zhang, and A. J. Heeger, "Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes," Applied Physics Letters, vol. 64, no. 12, pp. 1540-1542, 1994.
[18] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene," Science, vol. 258, no. 5087, pp. 1474-1476, 1992.
[19] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science, vol. 270, pp. 1789-1791, 1995-12-15 00:00:00 1995.
[20] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, "2.5% efficient organic plastic solar cells," Applied Physics Letters, vol. 78, no. 6, pp. 841-843, 2001.
[21] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, "Plastic Solar Cells," Advanced Functional Materials, vol. 11, no. 1, pp. 15-26, 2001.
[22] G. Li et al., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Materials, vol. 4, no. 11, pp. 864-868, 2005.
[23] S. Ito et al., "High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, no. 9, pp. 1202-1205, 2006.
[24] F. Dimroth et al., "Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency," Progress in Photovoltaics: Research and Applications, vol. 22, no. 3, pp. 277-282, 2014.
[25] H. Tsai et al., "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Letter vol. 536, no. 7616, pp. 312-316, 08/18/print 2016.
[26] A. Moliton and J.-M. Nunzi, "How to model the behaviour of organic photovoltaic cells," Polymer International, vol. 55, no. 6, pp. 583-600, 2006.
[27] C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, and W. E. Jones, "Probing Förster and Dexter Energy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensors," The Journal of Physical Chemistry B, vol. 108, no. 5, pp. 1537-1543, 2004/02/01 2004.
[28] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, "Solar cells utilizing small molecular weight organic semiconductors," Progress in Photovoltaics: Research and Applications, vol. 15, no. 8, pp. 659-676, 2007.
[29] C. J. Brabec et al., "Origin of the Open Circuit Voltage of Plastic Solar Cells," Advanced Functional Materials, vol. 11, no. 5, pp. 374-380, 2001.
[30] B. Mazhari, "An improved solar cell circuit model for organic solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 7, pp. 1021-1033, 2006/05/05/ 2006.
[31] J. Nelson, The physics of solar cells. World Scientific Publishing Co Inc, 2003.
[32] K. Bouzidi, M. Chegaar, and M. Aillerie, "Solar Cells Parameters Evaluation from Dark I-V Characteristics," Energy Procedia, vol. 18, pp. 1601-1610, 2012/01/01/ 2012.
[33] J. Rostalski and D. Meissner, "Monochromatic versus solar efficiencies of organic solar cells," Solar Energy Materials and Solar Cells, vol. 61, no. 1, pp. 87-95, 2000/02/15/ 2000.
[34] S. Farooq. SPECTRAL CHARACTERISTICS OF SOLAR RADIATION. Available: http://www.geol-amu.org/notes/m1r-1-6.htm
[35] E. Hutter and J. H. Fendler, "Exploitation of Localized Surface Plasmon Resonance," Advanced Materials, vol. 16, no. 19, pp. 1685-1706, 2004.
[36] J.-L. Wu and 吳志力, "Light Harvesting Schemes for Improving the Performance of Polymer Solar Cells," F. C. Chen and 陳方中, Eds., ed, 2011.
[37] K. R. Catchpole and A. Polman, "Plasmonic solar cells," Optics Express, vol. 16, no. 26, pp. 21793-21800, 2008/12/22 2008.
[38] A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Applied Physics Letters, vol. 92, no. 1, p. 013504, 2008.
[39] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, "Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms," Nano Lett, vol. 10, no. 4, pp. 1501-5, Apr 14 2010.
[40] M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, "Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes," Adv Mater, vol. 22, no. 39, pp. 4378-83, Oct 15 2010.
[41] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater, vol. 9, no. 3, pp. 205-13, Mar 2010.
[42] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater, 10.1038/nmat2629 vol. 9, no. 3, pp. 205-213, 03//print 2010.
[43] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat Mater, 10.1038/nmat2630 vol. 9, no. 3, pp. 193-204, 03//print 2010.
[44] M. K. Chuang and F. C. Chen, "Synergistic plasmonic effects of metal nanoparticle-decorated PEGylated graphene oxides in polymer solar cells," ACS Appl Mater Interfaces, vol. 7, no. 13, pp. 7397-405, Apr 08 2015.
[45] S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran, "Studies on surface plasmon resonance and photoluminescence of silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 1, pp. 186-190, 2008/11/01/ 2008.
[46] A. C. Carr and M. C. Vissers, "Synthetic or food-derived vitamin C--are they equally bioavailable?," Nutrients, vol. 5, no. 11, pp. 4284-304, Oct 28 2013.
[47] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, "Reduction of graphene oxide via L-ascorbic acid," Chem Commun (Camb), vol. 46, no. 7, pp. 1112-4, Feb 21 2010.
[48] J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, "Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films," International Journal of Photoenergy, vol. 2009, 2009.
[49] S. Forster and W. Widdra, "Structure of single polythiophene molecules on Au(001) prepared by in situ UHV electrospray deposition," J Chem Phys, vol. 141, no. 5, p. 054713, Aug 07 2014.
[50] K. Akaike et al., "Ultraviolet photoelectron spectroscopy and inverse photoemission spectroscopy of [6,6]-phenyl-C61-butyric acid methyl ester in gas and solid phases," Journal of Applied Physics, vol. 104, no. 2, p. 023710, 2008.
[51] W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, and J. Hou, "Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability," Sci Rep, vol. 4, p. 6570, Oct 10 2014.
[52] E. A. Lukina, M. N. Uvarov, and L. V. Kulik, "Charge Recombination in P3HT/PC70BM Composite Studied by Light-Induced EPR," The Journal of Physical Chemistry C, vol. 118, no. 32, pp. 18307-18314, 2014.
[53] DCB chemical structure. Available: https://www.carlroth.com/medias/sys_master/product_images_en/product_images_en/h76/h13/10610404982814.jpg
[54] DIH chemical structure. Available: https://media.scbt.com/product/10/31/z/103186.jpg
[55] Q. Tang, S.-Q. Shi, and L. Zhou, "Nanofabrication with Atomic Force Microscopy," Journal of Nanoscience and Nanotechnology, vol. 4, no. 8, pp. 948-963, 2004.
[56] G. International Electrotechnical Commission, Switzerland. Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1, . Available: https://webstore.iec.ch/preview/info_iec60904-1%7Bed2.0%7Den_d.pdf
[57] X. Guogang et al., "Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum," Journal of Physics D: Applied Physics, vol. 45, no. 42, p. 425104, 2012.
[58] P. Elmer. UV / Vis Spectronmeter Available: http://www.perkinelmer.com/tw/
[59] D. B. Williams and C. B. Carter, "Transmission Electron Microscopy-A Textbook for Materials Science," 2009.
[60] J. Xiong, Y. Wang, Q. Xue, and X. Wu, "Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid," Green Chemistry, vol. 13, no. 4, p. 900, 2011.
[61] Y. Liang et al., "Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," J Am Chem Soc, vol. 131, no. 22, pp. 7792-9, Jun 10 2009.
[62] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, "Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers," Angewandte Chemie, vol. 123, no. 41, pp. 9871-9876, 2011.
[63] B. J. Tremolet de Villers et al., "Removal of Residual Diiodooctane Improves Photostability of High-Performance Organic Solar Cell Polymers," Chemistry of Materials, vol. 28, no. 3, pp. 876-884, 2016.
[64] C. G. Shuttle et al., "Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell," Applied Physics Letters, vol. 92, no. 9, p. 093311, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔