|
[1] C. Battaglia, A. Cuevas, and S. De Wolf, "High-efficiency crystalline silicon solar cells: status and perspectives," Energy Environ. Sci., vol. 9, no. 5, pp. 1552-1576, 2016. [2] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes," Applied Physics Letters, vol. 92, no. 26, p. 263302, 2008. [3] D. Vak et al., "Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation," Applied Physics Letters, vol. 91, no. 8, p. 081102, 2007. [4] S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim, "Efficient Polymer Solar Cells Fabricated by Simple Brush Painting," Advanced Materials, vol. 19, no. 24, pp. 4410-4415, 2007. [5] F. C. Krebs, H. Spanggard, T. Kjær, M. Biancardo, and J. Alstrup, "Large area plastic solar cell modules," Materials Science and Engineering: B, vol. 138, no. 2, pp. 106-111, 2007. [6] Y. Galagan et al., "ITO-free flexible organic solar cells with printed current collecting grids," Solar Energy Materials and Solar Cells, vol. 95, no. 5, pp. 1339-1343, 2011/05/01/ 2011. [7] P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," Journal of Applied Physics, vol. 93, no. 7, pp. 3693-3723, 2003/04/01 2003. [8] G. Lanzani, "Materials for bioelectronics: Organic electronics meets biology," Nat Mater, News and Views vol. 13, no. 8, pp. 775-776, 08//print 2014. [9] Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, "Synthesis of Conjugated Polymers for Organic Solar Cell Applications," Chemical Reviews, vol. 109, no. 11, pp. 5868-5923, 2009/11/11 2009. [10] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954. [11] H. Kallmann and M. Pope, "Photovoltaic Effect in Organic Crystals," The Journal of Chemical Physics, vol. 30, no. 2, pp. 585-586, 1959. [12] A. K. Ghosh and T. Feng, "Merocyanine organic solar cells," Journal of Applied Physics, vol. 49, no. 12, pp. 5982-5989, 1978. [13] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986. [14] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, no. 6042, pp. 162-163, 1985. [15] S. Yoo, B. Domercq, and B. Kippelen, "Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions," Applied Physics Letters, vol. 85, no. 22, pp. 5427-5429, 2004. [16] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell," Applied Physics Letters, vol. 68, no. 22, pp. 3120-3122, 1996. [17] G. Yu, C. Zhang, and A. J. Heeger, "Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes," Applied Physics Letters, vol. 64, no. 12, pp. 1540-1542, 1994. [18] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene," Science, vol. 258, no. 5087, pp. 1474-1476, 1992. [19] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science, vol. 270, pp. 1789-1791, 1995-12-15 00:00:00 1995. [20] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, "2.5% efficient organic plastic solar cells," Applied Physics Letters, vol. 78, no. 6, pp. 841-843, 2001. [21] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, "Plastic Solar Cells," Advanced Functional Materials, vol. 11, no. 1, pp. 15-26, 2001. [22] G. Li et al., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Materials, vol. 4, no. 11, pp. 864-868, 2005. [23] S. Ito et al., "High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, no. 9, pp. 1202-1205, 2006. [24] F. Dimroth et al., "Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency," Progress in Photovoltaics: Research and Applications, vol. 22, no. 3, pp. 277-282, 2014. [25] H. Tsai et al., "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Letter vol. 536, no. 7616, pp. 312-316, 08/18/print 2016. [26] A. Moliton and J.-M. Nunzi, "How to model the behaviour of organic photovoltaic cells," Polymer International, vol. 55, no. 6, pp. 583-600, 2006. [27] C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, and W. E. Jones, "Probing Förster and Dexter Energy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensors," The Journal of Physical Chemistry B, vol. 108, no. 5, pp. 1537-1543, 2004/02/01 2004. [28] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, "Solar cells utilizing small molecular weight organic semiconductors," Progress in Photovoltaics: Research and Applications, vol. 15, no. 8, pp. 659-676, 2007. [29] C. J. Brabec et al., "Origin of the Open Circuit Voltage of Plastic Solar Cells," Advanced Functional Materials, vol. 11, no. 5, pp. 374-380, 2001. [30] B. Mazhari, "An improved solar cell circuit model for organic solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 7, pp. 1021-1033, 2006/05/05/ 2006. [31] J. Nelson, The physics of solar cells. World Scientific Publishing Co Inc, 2003. [32] K. Bouzidi, M. Chegaar, and M. Aillerie, "Solar Cells Parameters Evaluation from Dark I-V Characteristics," Energy Procedia, vol. 18, pp. 1601-1610, 2012/01/01/ 2012. [33] J. Rostalski and D. Meissner, "Monochromatic versus solar efficiencies of organic solar cells," Solar Energy Materials and Solar Cells, vol. 61, no. 1, pp. 87-95, 2000/02/15/ 2000. [34] S. Farooq. SPECTRAL CHARACTERISTICS OF SOLAR RADIATION. Available: http://www.geol-amu.org/notes/m1r-1-6.htm [35] E. Hutter and J. H. Fendler, "Exploitation of Localized Surface Plasmon Resonance," Advanced Materials, vol. 16, no. 19, pp. 1685-1706, 2004. [36] J.-L. Wu and 吳志力, "Light Harvesting Schemes for Improving the Performance of Polymer Solar Cells," F. C. Chen and 陳方中, Eds., ed, 2011. [37] K. R. Catchpole and A. Polman, "Plasmonic solar cells," Optics Express, vol. 16, no. 26, pp. 21793-21800, 2008/12/22 2008. [38] A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Applied Physics Letters, vol. 92, no. 1, p. 013504, 2008. [39] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, "Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms," Nano Lett, vol. 10, no. 4, pp. 1501-5, Apr 14 2010. [40] M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, "Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes," Adv Mater, vol. 22, no. 39, pp. 4378-83, Oct 15 2010. [41] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater, vol. 9, no. 3, pp. 205-13, Mar 2010. [42] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater, 10.1038/nmat2629 vol. 9, no. 3, pp. 205-213, 03//print 2010. [43] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat Mater, 10.1038/nmat2630 vol. 9, no. 3, pp. 193-204, 03//print 2010. [44] M. K. Chuang and F. C. Chen, "Synergistic plasmonic effects of metal nanoparticle-decorated PEGylated graphene oxides in polymer solar cells," ACS Appl Mater Interfaces, vol. 7, no. 13, pp. 7397-405, Apr 08 2015. [45] S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran, "Studies on surface plasmon resonance and photoluminescence of silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 1, pp. 186-190, 2008/11/01/ 2008. [46] A. C. Carr and M. C. Vissers, "Synthetic or food-derived vitamin C--are they equally bioavailable?," Nutrients, vol. 5, no. 11, pp. 4284-304, Oct 28 2013. [47] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, "Reduction of graphene oxide via L-ascorbic acid," Chem Commun (Camb), vol. 46, no. 7, pp. 1112-4, Feb 21 2010. [48] J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, "Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films," International Journal of Photoenergy, vol. 2009, 2009. [49] S. Forster and W. Widdra, "Structure of single polythiophene molecules on Au(001) prepared by in situ UHV electrospray deposition," J Chem Phys, vol. 141, no. 5, p. 054713, Aug 07 2014. [50] K. Akaike et al., "Ultraviolet photoelectron spectroscopy and inverse photoemission spectroscopy of [6,6]-phenyl-C61-butyric acid methyl ester in gas and solid phases," Journal of Applied Physics, vol. 104, no. 2, p. 023710, 2008. [51] W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, and J. Hou, "Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability," Sci Rep, vol. 4, p. 6570, Oct 10 2014. [52] E. A. Lukina, M. N. Uvarov, and L. V. Kulik, "Charge Recombination in P3HT/PC70BM Composite Studied by Light-Induced EPR," The Journal of Physical Chemistry C, vol. 118, no. 32, pp. 18307-18314, 2014. [53] DCB chemical structure. Available: https://www.carlroth.com/medias/sys_master/product_images_en/product_images_en/h76/h13/10610404982814.jpg [54] DIH chemical structure. Available: https://media.scbt.com/product/10/31/z/103186.jpg [55] Q. Tang, S.-Q. Shi, and L. Zhou, "Nanofabrication with Atomic Force Microscopy," Journal of Nanoscience and Nanotechnology, vol. 4, no. 8, pp. 948-963, 2004. [56] G. International Electrotechnical Commission, Switzerland. Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1, . Available: https://webstore.iec.ch/preview/info_iec60904-1%7Bed2.0%7Den_d.pdf [57] X. Guogang et al., "Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum," Journal of Physics D: Applied Physics, vol. 45, no. 42, p. 425104, 2012. [58] P. Elmer. UV / Vis Spectronmeter Available: http://www.perkinelmer.com/tw/ [59] D. B. Williams and C. B. Carter, "Transmission Electron Microscopy-A Textbook for Materials Science," 2009. [60] J. Xiong, Y. Wang, Q. Xue, and X. Wu, "Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid," Green Chemistry, vol. 13, no. 4, p. 900, 2011. [61] Y. Liang et al., "Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," J Am Chem Soc, vol. 131, no. 22, pp. 7792-9, Jun 10 2009. [62] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, "Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers," Angewandte Chemie, vol. 123, no. 41, pp. 9871-9876, 2011. [63] B. J. Tremolet de Villers et al., "Removal of Residual Diiodooctane Improves Photostability of High-Performance Organic Solar Cell Polymers," Chemistry of Materials, vol. 28, no. 3, pp. 876-884, 2016. [64] C. G. Shuttle et al., "Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell," Applied Physics Letters, vol. 92, no. 9, p. 093311, 2008.
|