(54.236.58.220) 您好!臺灣時間:2021/03/06 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭利暐
研究生(外文):Zheng, Li-Wei
論文名稱:不同表面結構與水溶液製程條件對薄矽基板有機太陽能電池的影響
論文名稱(外文):Solution Process Hybrid Solar Cell In Thin Substrate : Impact of Surface Template And Process Conditions
指導教授:余沛慈余沛慈引用關係
指導教授(外文):Yu, Pei-chen
口試委員:劉柏村謝嘉民孟心飛
口試委員(外文):Liu, Po-TsunShieh, Jia-MinMeng, Hsin-Fei
口試日期:2017-09-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:矽基板金屬輔助化學蝕刻混合型太陽能電池快速熱退火
外文關鍵詞:Rapid thermal annealingmetal assisted chemical etchhybrid solar cellsilicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
混合型太陽能電池利用低溫水溶液製成,可用於未來的薄矽基(<100μm)的光電元件。我們過去的研究中發現表面金字塔能改善元件的反射率,以及提高有機導電薄膜(PEDOT:PSS)的覆蓋率,在元件製程中相當重要。而我們希望進一步在金字塔表面尋找適合的表面結構以提升混合型太陽能電池的電性表現。
在我的研究中,結合微米金字塔和奈米結構,稱為Hierarchical結構。透過改變銀粒子在表面的分布,以及調變金屬輔助化學蝕刻液的比例,便可得到多元的表面結構。實驗中,我使用15及30奈米的銀薄膜,搭配快速熱退火,以及控制蝕刻液中氫氟酸和雙氧水的比例為60%、77%、94%。如此優化過的Hierarchical元件能夠在主動區為1x1平方公分的元件上得到14.1%的高轉換效率。
另外我們研究在三種不同基板厚度:180μm、100μm、50μm的元件表現。在50μm的超薄矽基板下目前可以做到11%的轉換效率。
我們也透過調整銀電極的遮光率,成功的製作出2x2平方公分的元件,並且在50μm的元件上維持良好的電性表現。
最後將透過快速熱退火搭配不同蝕刻液比例所蝕刻出的新Hierarchical元件應用在4平方公分的大面積元件上,由於良好的短路電流密度,使得在14%的遮光率下能夠達到13.57%的高效率。而在100μm的結果也有12.85%的優異效率。
Hybrid organic silicon solar cells employs low-temperature solution processes of and thus are viable for future silicon photovoltaics involving thin wafers (thickness <100μm). In the past, our studies have shown that the surface textures of silicon plays an important role on the device performance, which are mainly reflected on the anti-reflective property and surface coverage of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). As a result, researching a proper surface template is imperative to the development of hybrid organic solar cells.
In this work, we investigate a compound micro-and nano-scale surface textures, namely hierarchical structures. The templates are modulated through controlling the morphology of silver nano-particles on randomly distributed micro-pyramidal surface and the ratio of hydrogen fluoride (HF) and hydrogen peroxide (H2O2) during metal assisted chemical etch. Specifically, a thin silver film, ~15-30nm in thickness, is thermally evaporated, followed by rapid thermal annealing, and the ratio of HF to (HF+H2O2) is varied from 60% to 94% The device with an optimized hierarchical template exhibits a power conversion efficiency (PCE) of 14.1% with a 1x1 cm2 active area. Next, we investigate the device characteristics with three different substrate thicknesses: 180, 100 50μm, where we can still achieve a PCE of 11% on the 50μm-thick device. And we also modify the grid ratio of the frontal silver electrodes, we can successfully scale up the device area to 2x2 cm2, which maintaining good device performance on the 50μm-thick substrate.
Finally, we use the new hierarchical on 2x2 cm2 device, when the ratio is 14%, the efficiency can reach to 13.57% because of the high current density. And we try to use the new hierarchical on thin substrate, when the thickness is 100μm, the efficiency can also reach to 12.85%.
目錄
摘要 ii
Abstract iv
目錄 viii
圖目錄 x
表目錄 xiv
第一章、緒論 1
1.1 太陽能電池的發展與現況 1
1.2 太陽能電池的架構與原理 5
1.2.1 太陽能電池的架構 5
1.2.2 太陽能電池的原理 7
1.2.3 太陽能電池常用的參數定義 9
1.3 太陽能電池的量測及分析技術 12
1.3.1 元件電流密度-電壓特性量測 13
1.3.2 外部量子效率量測 14
1.3.3 掃描式電子顯微鏡 15
1.3.4 紫外/可見/紅外分光光譜儀 16
1.3.5 少數載子生命週期量測 17
第二章、矽基太陽能電池 18
2.1 矽基太陽能電池的介紹 18
2.1.1 同質接面太陽能電池 19
2.1.2 異質接面太陽能電池 20
2.2 混合型有機/矽異質接面太陽能電池 21
2.3研究動機 23
第三章、矽表面結構製備與元件分析 25
3.1表面拋光與粗糙化 25
3.2 HIERARCHICAL製程 28
3.3 新表面結構製程 30
3.3.1 結構介紹 30
3.3.2 快速熱退火 31
3.3.3 金屬輔助蝕刻 33
3.4 混合型有機太陽能電池 40
3.4.1 電池元件製程 40
3.4.2 電池元件分析 42
第四章、基板減薄和元件尺寸提升 48
4.1 基板減薄 48
4.2 薄片製程與元件分析 50
4.3 照光面積提升與調變遮光率 53
4.4 新結構提升面積與減薄 56
第五章、總結與未來展望 59
第六章、參考文獻 62
2 第六章、參考文獻
[1] "International Technology Roadmap for Photovoltaic (ITRPV)," http://www.itrpv.net/.
[2] "Solar Power Europe"
https://www.ashden.org/
[3] M. A. Green, "Third generation concepts for photovoltaics." pp. 50-54.
[4] P. K. Singh et al., “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions,” Solar Energy Materials and Solar Cells, vol. 70, no. 1, pp. 103-113, 2001.
[5] Shravan K. Chunduri et al., “PERC Solar Cell Technology 2016", 2016
[6] T.-G. Chen et al., “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Applied Physics Letters, vol. 101, no. 3, pp. 033301, 2012.
[7] J. Schmidt, et al., “Organic-silicon heterojunction solar cells: Open-circuit voltage potential and stability,” Applied Physics Letters, vol. 103, pp. 183901, 2013.
[8] J. He et al., “Enhanced Electro-Optical Properties of Nanocone/Nanopillar Dual-Structured Arrays for Ultrathin Silicon/ Organic Hybrid Solar Cell Applications,” Energy Mater, pp. 1501793, 2016.
[9] P. R. Pudasaini, et al., “High Efficiency Hybrid Silicon Nanopillar−Polymer Solar Cells,” Solar Energy Materials and Solar Cells, vol. 5, pp. 9620-9627, 2013.
[10] B. D. Choudhury et al., “Rapid thermal annealing treated spin–on doped antireflective radial junction Si nanopillar solar cell,” OPTICS EXPRESS, vol. 25, no. 8, 2017.
[11] S. Jeong, “Hybrid Silicon Nanocone−Polymer Solar Cells,” Nano Lett, vol. 12, pp. 2971-2976, 2012.
[12] P. Yu et al., “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Appl., vol. 5, no. 12, pp. 10780-10787, 2013.
[13] Y. Zhang et al., “Ultrathin, Flexible Organic−Inorganic Hybrid Solar Cells Based on Silicon Nanowires and PEDOT:PSS,” ACS Appl. Mater. Interfaces, vol. 6, pp. 4356−4363, 2014.

[14] L. Hong, et al., “High efficiency silicon nanohole/organic heterojunction hybrid solar cell,” Applied Physics Letters, vol. 104, pp. 053104, 2014.
[15] H. Jeong, et al., “Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells,” Adv. Mater., vol. 26, pp. 3445–3450, 2014.
[16] W.-R. Wei et al., “Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures,” Nano letters, vol. 13, no. 8, pp. 3658-3663, 2013.
[17] S. Thiyagu et al., “Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface,” Nanoscale, vol. 6, no. 6, pp. 3361-6, Mar 21, 2014.
[18] S. K. Srivastava et al., “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology, vol. 25, no. 17, pp. 175601, 2014.
[19] P. Gao et al, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Applied Physics Letters, vol. 103, pp. 253105, 2013.
[20] C. Chartier, et al., “Metal-assisted chemical etching of silicon in HF–H2O2,” Electrochimica Acta, vol. 53, pp. 5509–5516, 2008.
[21] S. Thiyagu et al., “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology, vol. 11, pp. 161-164, 2000.
[22] D. Zielke et al., “Organic-silicon heterojunction solar cells on n-type silicon wafers: The BackPEDOT concept,” Solar Energy Materials & Solar Cells, vol. 131, pp. 110-116, 2014.
[23] I. Khatri et al., “Green-tea modified multiwalled carbon nanotubes for efficient poly (3, 4-ethylenedioxythiophene): poly (stylenesulfonate)/n-silicon hybrid solar cell,” Applied Physics Letters, vol. 102, no. 6, pp. 063508, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔