|
2 第六章、參考文獻 [1] "International Technology Roadmap for Photovoltaic (ITRPV)," http://www.itrpv.net/. [2] "Solar Power Europe" https://www.ashden.org/ [3] M. A. Green, "Third generation concepts for photovoltaics." pp. 50-54. [4] P. K. Singh et al., “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions,” Solar Energy Materials and Solar Cells, vol. 70, no. 1, pp. 103-113, 2001. [5] Shravan K. Chunduri et al., “PERC Solar Cell Technology 2016", 2016 [6] T.-G. Chen et al., “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Applied Physics Letters, vol. 101, no. 3, pp. 033301, 2012. [7] J. Schmidt, et al., “Organic-silicon heterojunction solar cells: Open-circuit voltage potential and stability,” Applied Physics Letters, vol. 103, pp. 183901, 2013. [8] J. He et al., “Enhanced Electro-Optical Properties of Nanocone/Nanopillar Dual-Structured Arrays for Ultrathin Silicon/ Organic Hybrid Solar Cell Applications,” Energy Mater, pp. 1501793, 2016. [9] P. R. Pudasaini, et al., “High Efficiency Hybrid Silicon Nanopillar−Polymer Solar Cells,” Solar Energy Materials and Solar Cells, vol. 5, pp. 9620-9627, 2013. [10] B. D. Choudhury et al., “Rapid thermal annealing treated spin–on doped antireflective radial junction Si nanopillar solar cell,” OPTICS EXPRESS, vol. 25, no. 8, 2017. [11] S. Jeong, “Hybrid Silicon Nanocone−Polymer Solar Cells,” Nano Lett, vol. 12, pp. 2971-2976, 2012. [12] P. Yu et al., “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Appl., vol. 5, no. 12, pp. 10780-10787, 2013. [13] Y. Zhang et al., “Ultrathin, Flexible Organic−Inorganic Hybrid Solar Cells Based on Silicon Nanowires and PEDOT:PSS,” ACS Appl. Mater. Interfaces, vol. 6, pp. 4356−4363, 2014.
[14] L. Hong, et al., “High efficiency silicon nanohole/organic heterojunction hybrid solar cell,” Applied Physics Letters, vol. 104, pp. 053104, 2014. [15] H. Jeong, et al., “Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells,” Adv. Mater., vol. 26, pp. 3445–3450, 2014. [16] W.-R. Wei et al., “Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures,” Nano letters, vol. 13, no. 8, pp. 3658-3663, 2013. [17] S. Thiyagu et al., “Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface,” Nanoscale, vol. 6, no. 6, pp. 3361-6, Mar 21, 2014. [18] S. K. Srivastava et al., “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology, vol. 25, no. 17, pp. 175601, 2014. [19] P. Gao et al, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Applied Physics Letters, vol. 103, pp. 253105, 2013. [20] C. Chartier, et al., “Metal-assisted chemical etching of silicon in HF–H2O2,” Electrochimica Acta, vol. 53, pp. 5509–5516, 2008. [21] S. Thiyagu et al., “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology, vol. 11, pp. 161-164, 2000. [22] D. Zielke et al., “Organic-silicon heterojunction solar cells on n-type silicon wafers: The BackPEDOT concept,” Solar Energy Materials & Solar Cells, vol. 131, pp. 110-116, 2014. [23] I. Khatri et al., “Green-tea modified multiwalled carbon nanotubes for efficient poly (3, 4-ethylenedioxythiophene): poly (stylenesulfonate)/n-silicon hybrid solar cell,” Applied Physics Letters, vol. 102, no. 6, pp. 063508, 2013.
|