跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱益綸
研究生(外文):Chiu, Yi-Lun
論文名稱:少數層二維過渡金屬二硒化鉬超快載子動力學
論文名稱(外文):Ultrafast Carrier Dynamics of Few-layer Transition Metal Dichalcogenide MoSe2
指導教授:安惠榮
指導教授(外文):Ahn, Hye-young
口試委員:余沛慈張玉明徐嘉鴻
口試委員(外文):Yu, Pei-ChenChang, Yu-MingHsu, Chia-Hung
口試日期:2017-10-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:載子動力學二維材料
外文關鍵詞:carrier dynamics2D material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為利用飛秒時間解析激發-探測技術,研究過渡金屬二硫化物之二硒化鉬薄膜的超快動力學性質。我們知道過渡金屬二硫化物同層電子間的強平面共價鍵和層間作用力弱的凡德瓦力耦合,使得二硒化鉬具有層狀結構。另一個廣為人知的特性是二維過渡金屬二硫化物在多層與塊狀結構下時具有間接能隙,而當材料為單層結構時,則轉變為直接能隙半導體。其因奈米尺寸造成強量子侷限效應的獨特性質,導致緊密束縛的激子形成,使得過渡金屬二硫化物產生極大的結合能。在本論文研究中,我們利用化學氣相沉積的方法生長少數層二硒化鉬,在A激態的超快載子動力演化過程,瞬態穿透訊號結果顯示,當在激子躍遷吸收峰附近,其時間零點呈現正訊號,而當開始遠離吸收峰時,初始訊號轉變為負訊號。隨著時間延遲我們觀察到光激發載子在0.7 ps內快速鬆弛,這可能是由於通過載子-聲子散射或者缺陷捕獲而導致的載子冷卻,並且將訊號由負(正)翻轉至正(負)信號,訊號在20-30 ps內逐漸放鬆,並非單純的指數衰減達到平衡。這種二次吸收我們認為是由於化學氣相沉積過程中,所產生的相關缺陷,誘導探測光吸收。另外,透過探測光波長相依,我們由文獻中分析,相鄰的兩子帶可以互相交換動量,造成子帶間散射增加,誘導探測光吸收,可能是造成訊號翻轉的原因。
Ultrafast dynamic properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) molybdenum diselenide (MoSe2) films were investigated using femtosecond pump-and-probe technique. Strong in-plane covalent bonding and weak van der Waals coupling between TMDC layers enables MoSe2 to have layered structure. Bulk and multilayer MoSe2 is known to have an indirect bandgap, while monolayer MoSe2 is a direct bandgap semiconductor. Its unique property of strong quantum confinement leads to the formation of tightly bound excitons with extremely large binding energy for atomically thin TMDCs. In this work, we have studied the ultrafast dynamic evolution of A-excitons in multilayer (2–4 layers) MoSe2 grown by chemical vapor deposition (CVD). The transient transmission shows the initial negative signals around time zero for both far below and above the A-exciton absorption edge, whereas it shows the positive signals near the exciton transition peak. The photoexcited carriers relax quickly within 0.7 ps, which can be attributed to either carrier cooling via carrier-phonon scattering or defect capturing. The fast relaxing negative (positive) signals change its sign to positive (negative) instead of simple exponential decay to equilibrium and slowly relax within 20 – 30 ps. This secondary absorption may be defect-induced absorption related to the CVD deposition process. The band-broadening due to carrier collision in closely neighboring A and B excitons may be responsible for the sign flipping of initial photo-induced absorption.
摘要 I
Abstract II
致謝詞 IV
目錄 V
圖片清單 VI
表單清單 VII
第一章 簡介 1
1-1研究背景 1
1-2研究動機 2
1-3論文概要 3
第二章 研究背景 4
2-1二維材料 4
2-2過渡金屬二硫化物 5
2-2-1過渡金屬二硫化物架構[9] 5
2-2-2過渡金屬二硫化物特性[10]- [12] 10
2-3激發-探測技術 13
2-4載子動力學 17
2-4-1 載子生成 18
2-4-2 載子散射 19
2-4-3 載子復合 20
第三章 實驗方法和樣品 21
3-1 激發-探測實驗系統 21
3-2 樣品準備 22
3-2-1 化學氣相沉積法[27] 22
3-2-2 二硒化鉬樣品 23
第四章 結果與討論 25
4-1原子力顯微鏡 25
4-2吸收光譜 27
4-3拉曼光譜 28
4-4二硒化鉬載子動力學 29
4-4-1 探測光波長相依 30
4-4-2 光功率相依 44
第五章 結論 51
參考文獻 53
[1] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis.
"Single-Layer MoS2 Transistors", Nat. Nanotechnol. 6, 147-150, 17 Feb
2011.
[2] Jason K. Ellis, Melissa J. Lucero, and Gustavo E. Scuseria,"The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory", Appl. Phys. Lett. 99, Dec 2011.
[3] 中央研究院應用科學研究中心,李明洋;阿布杜拉國王科技大學,李連忠
交通大學電子物理系,張文豪, "二維過渡金屬二硫族化物平面異質結構
民國105年2月自然科學簡訊第28卷第1期。
[4] T.H. Kim, D.Y. Chung, J.Y. Ku, I. Song, S. Sul, D.H. Kim, K.S. Cho, B.L.
Choi, J.M. Kim, S. Hwang & K. Kim, "Heterogeneous stacking of nanodot
monolayers by dry pick-and-place transfer and its applications in quantum dot
light-emitting diodes", Nature Communications. 4, 6 Nov 2013.
[5] O. Lopez-Sanchez, D. Lembke, M. Kayci, A.Radenovic, and A. Kis.
"Ultrasensitive photodetectors based on monolayer MoS2", Nat. Nanotechnol.
8, 497–501, 9 June 2013.
[6] F. Ceballos F, M.Z. Bellus, H.Y. Chiu, H. Zhao, "Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure", Nanoscale. 7(41), 7 Nov 2015.
[7] Q.H. Wang, K.Z. Kourosh, K. Andras, Jonathan N. Coleman, and Michael S.
Strano "Electronics and optoelectronics of two-dimensional transition metal
dichalcogenides", Nat. Nanotechnol. 7, 699-712, 6 Nov 2012.
[8] Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa "Electrically switchable
chiral light-emitting transistor", Science. 344 (6185), 725-728, 16 May 2014.
[9] Alexander V. Kolobov, J. Tominaga et al. Two-Dimensional Transition-Metal Dichalcogenides, Springer, 239, pp. 29-32, 45-47,109-110, 2016.
[10] D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao "Coupled Spin and Valley
Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides", Phys. Rev. Lett. 108(19), 7, 2012.
[11] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B.
Liu, J. Feng, "Valley-selective circular dichroism of monolayer molybdenum
disulphide", Nature Commun. 3, 6, 2012.
[12] Z. Zhu, Y. C. Cheng, U. Schwingenschlogl, "Giant spin-orbit-induced spin
splitting in two-dimensional transition-metal dichalcogenide semiconductors", Physical Review B. 84, 14, 2011.
[13] M. Kastner, Bonding bands, "lone-pair bands, and impurity states in
chalcogenide semiconductors", Phys. Rev. Lett. 28(6), 355-357, 1972.
[14] G.D. Moore, "A study of the oxidation kinetics of synthetic molybdenum
diselenide", ASLE Trans. 13(2), 117-126, 1970.
[15] M. T. Lavik, T. M. Medved, G.D. Moore, "Oxidation characteristics of MoS2
and other solid lubricants", ASLE Trans. 11(1), 1968.
[16] K.C. Santosh, R.C. Longo, R.M. Wallace, K. Cho, "Surface oxidation
energetics and kinetics on MoS2 monolayer", J. Appl. Phys. 117, 135301, 2015.
[17] H. Liu, N. Han, J. Zhao, "Atomistic insight into the oxidation of monolayer
transition metal dichalcogenides: from structures to electronic properties",
RSC Adv. 5(23), 17572-17581, 2015.
[18] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, Debdeep Jena, H.G.
Xing, and L Huang, "Exciton Dynamics in Suspended Monolayer and
Few-Layer MoS2 2D Crystals", ACS Nano, 7(2), 1072–1080, 2013.
[19] K. Chen, R Ghosh, X. Meng, A. Roy, J.S. Kim, F. He, Sarah C. Mason1, X.
Xu, J.F. Lin, D. Akinwande, Sanjay K. Banerjee and Y. Wang, "Experimental
evidence of exciton capture by mid-gap defects in CVD grown monolayer
MoSe2", npj 2D Materials and Applications. 1, 15, 2017.
[20] R. K. Willardson and E. R. Weber, Ultrafast Physical Processes in
Semiconductor, Academic Press, 2000.
[21] W. Brütting, C.Adachi. Physics of organic semiconductors, 2nd, Wiley 2013.
[22] L. Gaffo, M. R. Cordeiro, A. R. Freitas, W. C. Moreira, E. M. Girotto, and V.
Zucolotto,"The effects of temperature on the molecular orientation of zinc
phthalocyanine films", Journal of Materials Science, 45(5), 1366-1370,
19 Dec 2010.
[23] Chih-Cheng Yu, Hyeyoung Ahn, "Carrier Dynamics of InN Nanorod arrays"
Opt. Express, 20, 769-75, 2011.
[24] Andreas Othonos, "Probing ultrafast carrier and phonon dynamics in semiconductors", J. App. Phys, 83(4), 1789, 1998.
[25] N. Peyghamnarian, Stephan W. Koch, A. Mysyrowicz. Introduction to
semiconductor optics, Prentice-Hall International, 1993.
[26] F. Chen, A.N. Cartwright, H. Lu, William J Schaffb. "Ultrafast carrier
dynamics in InN epilayers", Journal of Crystal Growth, 269(1), 10-14,
2004.
[27] G.W. Shim, K. Yoo, S.B. Seo, J. Shin, D.Y. Jung, I.S. Kang, C.W. Ahn, B.J.
Cho, and S.Y. Choi, "Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures", ASC Nano, 8(7), 6655-6662, 2014.
[28] S. Sim, J. Park, J.G. Song, C. In, Y.S. Lee, H. Kim, and H. Choi, "Exciton
dynamics in atomically thin MoS2: Interexcitonic interaction and broadening
kinetics", Physics Phy. Rev. 88(7), 075434, 2013.
[29] G.N. Ostojic, S. Zaric, J. Kono, V.C.Moore, R.H. Hauge, R.E. Smalley.
"Stability of High-Density One-Dimensional Excitons in Carbon Nanotubes
Under High Laser Excitation", Phys. Rev. Lett. 94(9), 097401, 2005.
[30] N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, "Exciton-exciton
annihilation in MoSe2 monolayers", Phys. Rev. B. 89, 125427, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top