(3.238.7.202) 您好!臺灣時間:2021/03/01 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊明諺
研究生(外文):Chuang, Ming-Yen
論文名稱:有機半導體感測器開發
論文名稱(外文):Organic Semiconductor Sensors
指導教授:冉曉雯
指導教授(外文):Zan, Hsiao-Wen
口試委員:李耀坤賴朝松鄭桂忠孟心飛呂家榮李柏璁
口試委員(外文):Li, Yaw-KuenLai, Chao-SungTang, Kea-TiongMeng, Hsin-FeiLu, Chia-JungLee, Po-Tsung
口試日期:2017-11-08
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:111
中文關鍵詞:有機半導體氣體感測器氨氣血液透析丙酮呼氣
外文關鍵詞:organic semiconductorgas sensorammoniahemodialysisacetonebreath
相關次數:
  • 被引用被引用:2
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Contents
摘要 III
ABSTRACT IV
CONTENTS VI
FIGURE CAPTIONS VIII
LIST OF TABLES XI
LIST OF ABBREVIATIONS XII
CHAPTER 1. INTRODUCTION 1
1.1 MOTIVATION – BREATH ANALYSIS VS. BLOOD ANALYSIS 1
1.2 ACETONE IN BREATH 2
1.3 AMMONIA IN BREATH 5
1.4 TECHNIQUES OF BREATH ANALYSIS AND THE MAJOR ADVANTAGES OF ORGANIC-BASED SENSORS 8
1.5 VERTICAL GAS SENSORS WITH NANO-STRUCTURES 10
CHAPTER 2. EXPERIMENTS 13
2.1 FABRICATION PROCESSES AND MATERIALS 14
2.1.1 Fabrication processes of porous electrode sensor 14
2.1.2 Fabrication processes of cylindrical nano-pore sensor 17
2.1.3 Fabrication processes of nanowire electrode sensor 21
2.1.4 Sensing materials 22
2.1.5 The SEM images of the sensors 24
2.2 SENSING SYSTEMS AND STANDARD GASES PREPARATION 27
2.2.1 Pure nitrogen background system 27
2.2.2 Dry air background system 28
2.2.3 Standard gases preparation 31
2.3 ELECTRIC SIGNAL MEASUREMENT 33
2.4 CLINICAL TRIAL – HEMODIALYSIS PATIENTS 40
2.4.1 Inclusion criteria for hemodialysis patients 40
2.4.2 Exhaled breath sampling and analysis 40
2.4.3 Evaluating the correlation between breath ammonia and BUN 41
CHAPTER 3. PROGRESS IN SENSOR STRUCTURE 43
3.1 NEW STRUCTURE WITH CYLINDRICAL NANO-PORE 43
3.2 NEW CAPPING METAL USING SILVER NANOWIRES 47
3.3 THE P/N BLENDED CHANNEL 54
3.3.1 The redox reaction and p-, n-type sensors 54
3.3.2 The modulated sensors 58
CHAPTER 4. SENSOR SYSTEM DEVELOPMENT 63
4.1 ACETONE SENSOR SYSTEM 63
4.1.1 Gas sensing in different backgrounds 63
4.1.2 The selectivity of TFB sensor 69
4.2 AMMONIA SENSOR SYSTEM 74
4.2.1 The improved lifetime of TFB sensor 74
4.2.2 The robustness of TFB sensor 80
CHAPTER 5. BREATH TEST AND CLINICAL TRIALS 82
5.1 HOW TO COLLECT HUMAN BREATH 82
5.2 INFLUENCE OF FOOD INTAKE 86
5.3 CLINICAL TRIALS ON HD PATIENTS 91
CHAPTER 6. CONCLUSION 95
REFERENCES 98
PUBLICATION LIST 109
APPENDIX 111
[1] C. Di Natale, R. Paolesse, E. Martinelli, R. Capuano, Solid-state gas sensors for breath analysis: A review, Anal. Chim. Acta. 824 (2014) 1–17. doi:10.1016/j.aca.2014.03.014.
[2] M. Righettoni, A. Amann, S.E. Pratsinis, Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors, Mater. Today. 18 (2015) 163–171. doi:10.1016/j.mattod.2014.08.017.
[3] W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds, Clin. Chim. Acta. 347 (2004) 25–39. doi:10.1016/j.cccn.2004.04.023.
[4] F. Di Francesco, R. Fuoco, M.G. Trivella, A. Ceccarini, Breath analysis: trends in techniques and clinical applications, Microchem. J. 79 (2005) 405–410. doi:10.1016/j.microc.2004.10.008.
[5] F.L.M. Ricciardolo, Revisiting the role of exhaled nitric oxide in asthma, Current Opinion in Pulmonary Medicine 20 (2014) 53–59. doi:10.1097/MCP.0000000000000006.
[6] T. Nagasaki , H. Matsumoto, Y. Kanemitsu, K. Izuhara, Y. Tohda, T. Horiguchi, H. Kita, K. Tomii , M. Fujimura, A. Yokoyama, Y. Nakano, S. Hozawa, I. Ito, T. Oguma, Y. Izuhara, T. Tajiri, T. Iwata, J. Ono, S. Ohta, T. Yokoyama , A. Niimi, M. Mishima, Using Exhaled Nitric Oxide and Serum Periostin as a Composite Marker to Identify Severe/Steroid-Insensitive Asthma, American Journal of Respiratory and Critical Care Medicine 190 (2014) 1449–1452.
[7] P.J. Honkoop, R.J.B. Loijmans, E.H. Termeer, J.B. Snoeck-Stroband, W.B. van den Hout, M.J. Bakker, W.J.J. Assendelft, G. ter Riet, P.J. Sterk, T.R.J. Schermer, J.K. Sont, Symptom- and fraction of exhaled nitric oxide–driven strategies for asthma control: A cluster-randomized trial in primary care, J. Allergy Clin. Immunol. 135 (2015) 682–688.e11. doi:10.1016/j.jaci.2014.07.016.
[8] C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization, J. Chromatogr. B. 810 (2004) 269–275. doi:10.1016/j.jchromb.2004.08.013.
[9] C. Turner, C. Walton, S. Hoashi, M. Evans, Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps, J. Breath Res. 3 (2009) 046004. doi:10.1088/1752-7155/3/4/046004.
[10] G.-T. Fan, C.-L. Yang, C.-H. Lin, C.-C. Chen, C.-H. Shih, Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath, Talanta. 120 (2014) 386–390. doi:10.1016/j.talanta.2013.12.025.
[11] S. Davies, P. Spanel, D. Smith, Quantitative analysis of ammonia on the breath of patients in end-stage renal failure, Kidney Int. 52 (1997) 223–228. doi:10.1038/ki.1997.324.
[12] L.R. Narasimhan, W. Goodman, C.K.N. Patel, Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis, Proc. Natl. Acad. Sci. 98 (2001) 4617–4621. doi:10.1073/pnas.071057598.
[13] Z.H. Endre, J.W. Pickering, M.K. Storer, W.-P. Hu, K.T. Moorhead, R. Allardyce, D.O. McGregor, J.M. Scotter, Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy, Physiol. Meas. 32 (2011) 115. doi:10.1088/0967-3334/32/1/008.
[14] C. Popa, D.C.A. Dutu, R. Cernat, C. Matei, A.M. Bratu, S. Banita, D.C. Dumitras, Ethylene and ammonia traces measurements from the patients’ breath with renal failure via LPAS method, Appl. Phys. B. 105 (2011) 669–674. doi:10.1007/s00340-011-4716-8.
[15] G. Neri, A. Lacquaniti, G. Rizzo, N. Donato, M. Latino, M. Buemi, Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques, Nephrol. Dial. Transplant. 27 (2012) 2945–2952. doi:10.1093/ndt/gfr738.
[16] T. Hibbard, K. Crowley, F. Kelly, F. Ward, J. Holian, A. Watson, A.J. Killard, Point of Care Monitoring of Hemodialysis Patients with a Breath Ammonia Measurement Device Based on Printed Polyaniline Nanoparticle Sensors, Anal. Chem. 85 (2013) 12158–12165. doi:10.1021/ac403472d.
[17] W. Chen, S. Laiho, O. Vaittinen, L. Halonen, F. Ortiz, C. Forsblom, P.-H. Groop, M. Lehto, M. Metsälä, Biochemical pathways of breath ammonia (NH 3 ) generation in patients with end-stage renal disease undergoing hemodialysis, J. Breath Res. 10 (2016) 036011. doi:10.1088/1752-7155/10/3/036011.
[18] J. Limeres, J.F. Garcez, J.S. Marinho, A. Loureiro, M. Diniz, P. Diz, A breath ammonia analyser for monitoring patients with end-stage renal disease on haemodialysis, Br. J. Biomed. Sci. 74 (2017) 24–29. doi:10.1080/09674845.2016.1239886.
[19] L.C. Plantinga, N.E. Fink, B.G. Jaar, J.H. Sadler, N.W. Levin, J. Coresh, M.J. Klag, N.R. Powe, Attainment of clinical performance targets and improvement in clinical outcomes and resource use in hemodialysis care: a prospective cohort study, BMC Health Serv. Res. 7 (2007) 5. doi:10.1186/1472-6963-7-5.
[20] F. Locatelli, U. Buoncristiani, B. Canaud, H. Köhler, T. Petitclerc, P. Zucchelli, Dialysis dose and frequency, Nephrol. Dial. Transplant. 20 (2005) 285–296. doi:10.1093/ndt/gfh550.
[21] W.R. Clark, M.V. Rocco, A.J. Collins, Quantification of Hemodialysis: Analysis of Methods and the Relevance to Patient Outcome, Blood Purif. 15 (1997) 92–111. doi:10.1159/000170321.
[22] A. Reyes-Reyes, R.C. Horsten, H.P. Urbach, N. Bhattacharya, Study of the Exhaled Acetone in Type 1 Diabetes Using Quantum Cascade Laser Spectroscopy, Anal. Chem. 87 (2015) 507–512. doi:10.1021/ac504235e.
[23] T.P.J. Blaikie, J.A. Edge, G. Hancock, D. Lunn, C. Megson, R. Peverall, G. Richmond, G.A.D. Ritchie, D. Taylor, Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes, J. Breath Res. 8 (2014) 046010. doi:10.1088/1752-7155/8/4/046010.
[24] V. M, C. G, C. C, I. B, B. A, G. T, The direct measurement of 3-beta-hydroxy butyrate enhances the management of diabetic ketoacidosis in children and reduces time and costs of treatment., Diabetes Nutr. Metab. 16 (2003) 312–316.
[25] Z. Ali, B. Levine, M. Ripple, D.R. Fowler, Diabetic Ketoacidosis: A Silent Death, Am. J. Forensic Med. Pathol. 33 (2012) 189–193. doi:10.1097/PAF.0b013e31825192e7.
[26] J.C. Anderson, Measuring breath acetone for monitoring fat loss: Review: Breath Acetone and Fat Loss, Obesity. 23 (2015) 2327–2334. doi:10.1002/oby.21242.
[27] M.P. Kalapos, On the mammalian acetone metabolism: from chemistry to clinical implications, Biochim. Biophys. Acta BBA - Gen. Subj. 1621 (2003) 122–139. doi:10.1016/S0304-4165(03)00051-5.
[28] L. Laffel, Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes, Diabetes Metab. Res. Rev. 15 (1999) 412–426. doi:10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8.
[29] Z. Wang, C. Wang, Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements, J. Breath Res. 7 (2013) 037109. doi:10.1088/1752-7155/7/3/037109.
[30] I. Ueta, Y. Saito, M. Hosoe, M. Okamoto, H. Ohkita, S. Shirai, H. Tamura, K. Jinno, Breath acetone analysis with miniaturized sample preparation device: In-needle preconcentration and subsequent determination by gas chromatography–mass spectroscopy, J. Chromatogr. B. 877 (2009) 2551–2556. doi:10.1016/j.jchromb.2009.06.039.
[31] J.C. Anderson, W.J.E. Lamm, M.P. Hlastala, Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver, J. Appl. Physiol. 100 (2006) 880–889. doi:10.1152/japplphysiol.00868.2005.
[32] J.C. Anderson, M.P. Hlastala, Breath tests and airway gas exchange, Pulm. Pharmacol. Ther. 20 (2007) 112–117. doi:10.1016/j.pupt.2005.12.002.
[33] J. King, K. Unterkofler, G. Teschl, S. Teschl, H. Koc, H. Hinterhuber, A. Amann, A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone, J. Math. Biol. 63 (2011) 959–999. doi:10.1007/s00285-010-0398-9.
[34] G. Rooth, S. Östenson, ACETONE IN ALVEOLAR AIR, AND THE CONTROL OF DIABETES, The Lancet. 288 (1966) 1102–1105. doi:10.1016/S0140-6736(66)92194-5.
[35] B.E. Landini, S.T. Bravard, Breath Acetone Concentration Measured Using a Palm-Size Enzymatic Sensor System, IEEE Sens. J. 9 (2009) 1802–1807. doi:10.1109/JSEN.2009.2033305.
[36] A.E. Kitabchi, G.E. Umpierrez, J.M. Miles, J.N. Fisher, Hyperglycemic Crises in Adult Patients With Diabetes, Diabetes Care. 32 (2009) 1335–1343. doi:10.2337/dc09-9032.
[37] C. Wang, A. Mbi, M. Shepherd, A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C, IEEE Sens. J. 10 (2010) 54–63. doi:10.1109/JSEN.2009.2035730.
[38] C.N. Tassopoulos, D. Barnett, T. Russell Fraser, BREATH-ACETONE AND BLOOD-SUGAR MEASUREMENTS IN DIABETES, The Lancet. 293 (1969) 1282–1286. doi:10.1016/S0140-6736(69)92222-3.
[39] L.M.B. Laffel, K. Wentzell, C. Loughlin, A. Tovar, K. Moltz, S. Brink, Sick day management using blood 3-hydroxybutyrate (3-OHB) compared with urine ketone monitoring reduces hospital visits in young people with T1DM: a randomized clinical trial, Diabet. Med. 23 (2006) 278–284. doi:10.1111/j.1464-5491.2005.01771.x.
[40] D. Guo, D. Zhang, L. Zhang, G. Lu, Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis, Sens. Actuators B Chem. 173 (2012) 106–113. doi:10.1016/j.snb.2012.06.025.
[41] R. Xing, Q. Li, L. Xia, J. Song, L. Xu, J. Zhang, Y. Xie, H. Song, Au-modified three-dimensional In 2 O 3 inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes, Nanoscale. 7 (2015) 13051–13060. doi:10.1039/C5NR02709H.
[42] A. Staerz, U. Weimar, N. Barsan, Understanding the Potential of WO3 Based Sensors for Breath Analysis, Sensors. 16 (2016) 1815. doi:10.3390/s16111815.
[43] S.-J. Choi, I. Lee, B.-H. Jang, D.-Y. Youn, W.-H. Ryu, C.O. Park, I.-D. Kim, Selective Diagnosis of Diabetes Using Pt-Functionalized WO 3 Hemitube Networks As a Sensing Layer of Acetone in Exhaled Breath, Anal. Chem. 85 (2013) 1792–1796. doi:10.1021/ac303148a.
[44] M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO 3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis, Anal. Chem. 82 (2010) 3581–3587. doi:10.1021/ac902695n.
[45] S. Capone, M. Benkovicova, A. Forleo, M. Jergel, M.G. Manera, P. Siffalovic, A. Taurino, E. Majkova, P. Siciliano, I. Vavra, S. Luby, R. Rella, Palladium/γ-Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors, Sens. Actuators B Chem. 243 (2017) 895–903. doi:10.1016/j.snb.2016.12.027.
[46] S.-J. Choi, B.-H. Jang, S.-J. Lee, B.K. Min, A. Rothschild, I.-D. Kim, Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes and Halitosis Using SnO 2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets, ACS Appl. Mater. Interfaces. 6 (2014) 2588–2597. doi:10.1021/am405088q.
[47] P. Wang, X. Zhang, S. Gao, X. Cheng, L. Sui, Y. Xu, X. Zhao, H. Zhao, L. Huo, Superior acetone sensor based on single-crystalline α-Fe 2 O 3 mesoporous nanospheres via [C 12 mim][BF 4 ]-assistant synthesis, Sens. Actuators B Chem. 241 (2017) 967–977. doi:10.1016/j.snb.2016.10.136.
[48] X. Zhou, X. Li, H. Sun, P. Sun, X. Liang, F. Liu, X. Hu, G. Lu, Nanosheet-Assembled ZnFe 2 O 4 Hollow Microspheres for High-Sensitive Acetone Sensor, ACS Appl. Mater. Interfaces. 7 (2015) 15414–15421. doi:10.1021/acsami.5b03537.
[49] D.H. Kim, Y.-S. Shim, J.-M. Jeon, H.Y. Jeong, S.S. Park, Y.-W. Kim, J.-S. Kim, J.-H. Lee, H.W. Jang, Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor, ACS Appl. Mater. Interfaces. (2014) 140828110301006. doi:10.1021/am504156w.
[50] C.-M. Yang, T.-C. Chen, Y.-C. Yang, M.-C. Hsiao, M. Meyyappan, C.-S. Lai, Ultraviolet illumination effect on monolayer graphene-based resistive sensor for acetone detection, Vacuum. 140 (2017) 89–95. doi:10.1016/j.vacuum.2016.08.006.
[51] I. Osica, G. Imamura, K. Shiba, Q. Ji, L.K. Shrestha, J.P. Hill, K.J. Kurzydłowski, G. Yoshikawa, K. Ariga, Highly Networked Capsular Silica–Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing, ACS Appl. Mater. Interfaces. 9 (2017) 9945–9954. doi:10.1021/acsami.6b15680.
[52] A. Daneshkhah, S. Shrestha, M. Agarwal, K. Varahramyan, Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath, Sens. Actuators B Chem. 221 (2015) 635–643. doi:10.1016/j.snb.2015.06.145.
[53] A. Daneshkhah, S. Shrestha, A. Siegel, K. Varahramyan, M. Agarwal, Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol, Sensors. 17 (2017) 595. doi:10.3390/s17030595.
[54] T. Sarkar, S. Srinives, S. Sarkar, R.C. Haddon, A. Mulchandani, Single-Walled Carbon Nanotube–Poly(porphyrin) Hybrid for Volatile Organic Compounds Detection, J. Phys. Chem. C. 118 (2014) 1602–1610. doi:10.1021/jp409851m.
[55] A. Hasani, H.S. Dehsari, J.N. Gavgani, E.K. Shalamzari, A. Salehi, F. Afshar Taromi, M. Mahyari, Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide, Microchim. Acta. 182 (2015) 1551–1559. doi:10.1007/s00604-015-1487-7.
[56] J.-S. Do, S.-H. Wang, On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers, Sens. Actuators B Chem. 185 (2013) 39–46. doi:10.1016/j.snb.2013.04.080.
[57] M. Cavallari, J. Izquierdo, G. Braga, E. Dirani, M. Pereira-da-Silva, E. Rodríguez, F. Fonseca, Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring, Sensors. 15 (2015) 9592–9609. doi:10.3390/s150409592.
[58] L. Ruangchuay, A. Sirivat, J. Schwank, Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer, Talanta. 60 (2003) 25–30. doi:10.1016/S0039-9140(03)00061-4.
[59] L. Ruangchuay, A. Sirivat, J. Schwank, Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms, Synth. Met. 140 (2004) 15–21. doi:10.1016/S0379-6779(02)01319-X.
[60] J.-B. Yu, H.-G. Byun, M.-S. So, J.-S. Huh, Analysis of diabetic patient’s breath with conducting polymer sensor array, Sens. Actuators B Chem. 108 (2005) 305–308. doi:10.1016/j.snb.2005.01.040.
[61] K. Hachawee, W. Lerdwijitjarud, A. Sittattrakul, A. Sirivat, Structural effect of ferrocenecarboxymethylated polymers on their electrical behavior under the exposure to methanol and acetone vapors, Mater. Sci. Eng. B. 153 (2008) 10–20. doi:10.1016/j.mseb.2008.07.005.
[62] R.W.C. Li, L.R.F. Carvalho, L. Ventura, J. Gruber, Low cost selective sensor for carbonyl compounds in air based on a novel conductive poly(p-xylylene) derivative, Mater. Sci. Eng. C. 29 (2009) 426–429. doi:10.1016/j.msec.2008.08.016.
[63] J. Yu, X. Yu, L. Zhang, H. Zeng, Ammonia gas sensor based on pentacene organic field-effect transistor, Sens. Actuators B Chem. 173 (2012) 133–138. doi:10.1016/j.snb.2012.06.060.
[64] L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, L. Chi, High Performance Field-Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film, Adv. Mater. 25 (2013) 3419–3425. doi:10.1002/adma.201301138.
[65] X. Yu, N. Zhou, S. Han, H. Lin, D.B. Buchholz, J. Yu, R.P.H. Chang, T.J. Marks, A. Facchetti, Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors, J. Mater. Chem. C. 1 (2013) 6532–6535. doi:10.1039/C3TC31412J.
[66] S. Han, X. Zhuang, W. Shi, X. Yang, L. Li, J. Yu, Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor, Sens. Actuators B Chem. 225 (2016) 10–15. doi:10.1016/j.snb.2015.11.005.
[67] M. Šetka, J. Drbohlavová, J. Hubálek, Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors, Sensors. 17 (2017) 562. doi:10.3390/s17030562.
[68] C. Kumar, G. Rawat, H. Kumar, Y. Kumar, R. Prakash, S. Jit, Electrical and ammonia gas sensing properties of poly (3, 3‴- dialkylquaterthiophene) based organic thin film transistors fabricated by floating-film transfer method, Org. Electron. 48 (2017) 53–60. doi:10.1016/j.orgel.2017.05.040.
[69] K. Besar, J. Dailey, X. Zhao, H.E. Katz, A flexible organic inverter made from printable materials for synergistic ammonia sensing, J. Mater. Chem. C. 5 (2017) 6506–6511. doi:10.1039/C7TC01377A.
[70] M.-Z. Dai, Y.-H. Chen, M.-Y. Chuang, H.-W. Zan, H.-F. Meng, Achieving a Good Life Time in a Vertical-Organic-Diode Gas Sensor, Sensors. 14 (2014) 16287–16295. doi:10.3390/s140916287.
[71] J.W. Jeong, Y.D. Lee, Y.M. Kim, Y.W. Park, J.H. Choi, T.H. Park, C.D. Soo, S.M. Won, I.K. Han, B.K. Ju, The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors, Sens. Actuators B Chem. 146 (2010) 40–45. doi:10.1016/j.snb.2010.02.019.
[72] B. Li, G. Sauvé, M.C. Iovu, M. Jeffries-EL, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J.C. Revelli, A.G. Kusne, T. Kowalewski, J.L. Snyder, L.E. Weiss, G.K. Fedder, R.D. McCullough, D.N. Lambeth, Volatile Organic Compound Detection Using Nanostructured Copolymers, Nano Lett. 6 (2006) 1598–1602. doi:10.1021/nl060498o.
[73] S. Ji, X. Wang, C. Liu, H. Wang, T. Wang, D. Yan, Controllable organic nanofiber network crystal room temperature NO2 sensor, Org. Electron. 14 (2013) 821–826. doi:10.1016/j.orgel.2013.01.006.
[74] W. Huang, J. Yu, X. Yu, W. Shi, Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor, Org. Electron. 14 (2013) 3453–3459. doi:10.1016/j.orgel.2013.09.018.
[75] M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nat. Mater. 6 (2007) 379–384. doi:10.1038/nmat1891.
[76] E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W. Grogger, Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors, Sens. Actuators B Chem. 165 (2012) 110–118. doi:10.1016/j.snb.2012.02.025.
[77] J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Z. Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays, Sens. Actuators B Chem. 176 (2013) 360–367. doi:10.1016/j.snb.2012.09.081.
[78] X.B. Li, S.Y. Ma, F.M. Li, Y. Chen, Q.Q. Zhang, X.H. Yang, C.Y. Wang, J. Zhu, Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection, Mater. Lett. 100 (2013) 119–123. doi:10.1016/j.matlet.2013.02.117.
[79] M.-Z. Dai, Y.-L. Lin, H.-C. Lin, H.-W. Zan, K.-T. Chang, H.-F. Meng, J.-W. Liao, M.-J. Tsai, H. Cheng, Highly Sensitive Ammonia Sensor with Organic Vertical Nanojunctions for Noninvasive Detection of Hepatic Injury, Anal. Chem. 85 (2013) 3110–3117. doi:10.1021/ac303100k.
[80] H.J. In, C.R. Field, P.E. Pehrsson, Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection, Nanotechnology. 22 (2011) 355501. doi:10.1088/0957-4484/22/35/355501.
[81] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices, Nano Lett. 4 (2004) 1919–1924. doi:10.1021/nl0489283.
[82] J. Wang, S. Chan, R.R. Carlson, Y. Luo, G. Ge, R.S. Ries, J.R. Heath, H.-R. Tseng, Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors, Nano Lett. 4 (2004) 1693–1697. doi:10.1021/nl049114p.
[83] H.-C. Lin, H.-W. Zan, Y.-C. Chao, M.-Y. Chang, H.-F. Meng, Review of a solution-processed vertical organic transistor as a solid-state vacuum tube, Semicond. Sci. Technol. 30 (2015) 054003. doi:10.1088/0268-1242/30/5/054003.
[84] S.-M. Yang, S.G. Jang, D.-G. Choi, S. Kim, H.K. Yu, Nanomachining by Colloidal Lithography, Small. 2 (2006) 458–475. doi:10.1002/smll.200500390.
[85] H.-W. Zan, C.-H. Li, C.-K. Yu, H.-F. Meng, Sensitive gas sensor embedded in a vertical polymer space-charge-limited transistor, Appl. Phys. Lett. 101 (2012) 023303. doi:10.1063/1.4734498.
[86] Y.-C. Chao, K.-R. Wang, H.-F. Meng, H.-W. Zan, Y.-H. Hsu, Large-area non-close-packed nanosphere deposition by blade coating for vertical space-charge-limited transistor, Org. Electron. 13 (2012) 3177–3182. doi:10.1016/j.orgel.2012.09.013.
[87] Y.-M. Chen, Y.-Y. Lai, Y.-C. Chao, H.-W. Zan, H.-F. Meng, S.-F. Horng, C.-H. Chang, Large-Area Nano-patterning and Fabrication of Vertical Transistor Array by Non-close-packed Polystyrene Spheres, ACS Appl. Mater. Interfaces. 7 (2015) 18899–18903. doi:10.1021/acsami.5b03724.
[88] J.-N. Chen, The miniaturized portable ammonia sensing system, Institute of Electronics Engineering, NTHU, 2015.
[89] L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, 81 (1977) 89–96.
[90] R.-S. Jian, Y.-S. Huang, S.-L. Lai, L.-Y. Sung, C.-J. Lu, Compact instrumentation of a μ-GC for real time analysis of sub-ppb VOC mixtures, Microchem. J. 108 (2013) 161–167. doi:10.1016/j.microc.2012.10.016.
[91] D.M. Himmelblau, J.B. Riggs, Basic principles and calculations in chemical engineering, FT Press, 2012.
[92] S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites, Ceram. Int. 40 (2014) 8013–8020. doi:10.1016/j.ceramint.2013.12.153.
[93] S.F. Liu, L.C.H. Moh, T.M. Swager, Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds, Chem. Mater. 27 (2015) 3560–3563. doi:10.1021/acs.chemmater.5b00153.
[94] T. Hibbard, A.J. Killard, Breath Ammonia Analysis: Clinical Application and Measurement, Crit. Rev. Anal. Chem. 41 (2011) 21–35. doi:10.1080/10408347.2011.521729.
[95] T.L. Mathew, P. Pownraj, S. Abdulla, B. Pullithadathil, Technologies for Clinical Diagnosis Using Expired Human Breath Analysis, Diagnostics. 5 (2015) 27–60. doi:10.3390/diagnostics5010027.
[96] B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers, Nanoscale. 5 (2013) 2505–2510. doi:10.1039/C3NR33872J.
[97] H. Fukuda, Y. Yamagishi, M. Ise, N. Takano, Gas sensing properties of poly-3-hexylthiophene thin film transistors, Sens. Actuators B Chem. 108 (2005) 414–417. doi:10.1016/j.snb.2004.10.045.
[98] W. Js, H. Jt, J. S, J. Ji, K. Hy, J. Hj, J. Sy, B. Kj, L. Gw, Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes., Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes, Sci. Rep. Sci. Rep. 4, 4 (2014) 4804–4804. doi:10.1038/srep04804, 10.1038/srep04804.
[99] L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes, ACS Appl. Mater. Interfaces. 3 (2011) 4075–4084. doi:10.1021/am2009585.
[100] L.-H. Chen, P. Lin, M.-C. Chen, P.-Y. Huang, C. Kim, J.-C. Ho, C.-C. Lee, Silver nanowire-polymer composite electrode for high performance solution-processed thin-film transistors, Org. Electron. 13 (2012) 1881–1886. doi:10.1016/j.orgel.2012.05.040.
[101] Y.-C. Chao, Y.-C. Lin, M.-Z. Dai, H.-W. Zan, H.-F. Meng, Reduced hole injection barrier for achieving ultralow voltage polymer space-charge-limited transistor with a high on/off current ratio, Appl. Phys. Lett. 95 (2009) 203305. doi:10.1063/1.3261749.
[102] J. Yi, J.M. Lee, W.I. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors, Sens. Actuators B Chem. 155 (2011) 264–269. doi:10.1016/j.snb.2010.12.033.
[103] Y. Ahn, Y. Jeong, Y. Lee, Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide, ACS Appl. Mater. Interfaces. 4 (2012) 6410–6414. doi:10.1021/am301913w.
[104] Y. Li, Y.-Q. Liu, L.-W. Liu, G.-B. Pan, Ammonia Chemiresistor Sensor Based on Poly(3-Hexylthiophene) Film Oxidized by Nitrosonium Hexafluorophosphate, Chem. Lett. 41 (2012) 1569–1570. doi:10.1246/cl.2012.1569.
[105] B.J. Murray, E.C. Walter, R.M. Penner, Amine Vapor Sensing with Silver Mesowires, Nano Lett. 4 (2004) 665–670. doi:10.1021/nl049841k.
[106] J. Locklin, Z. Bao, Effect of morphology on organic thin film transistor sensors, Anal. Bioanal. Chem. 384 (2006) 336–342. doi:10.1007/s00216-005-0137-z.
[107] Z.-T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Humidity sensors based on pentacene thin-film transistors, Appl. Phys. Lett. 81 (2002) 4643–4645. doi:10.1063/1.1527233.
[108] D.J. Gundlach, T.N. Jackson, D.G. Schlom, S.F. Nelson, Solvent-induced phase transition in thermally evaporated pentacene films, Appl. Phys. Lett. 74 (1999) 3302–3304. doi:10.1063/1.123325.
[109] M.-Y. Chuang, H.-W. Zan, P. Yu, Y.-C. Lai, H.-F. Meng, Gas permeable silver nanowire electrode for realizing vertical type sensitive gas sensor, Org. Electron. 15 (2014) 2769–2774. doi:10.1016/j.orgel.2014.08.012.
[110] M.-Y. Chuang, J.-N. Chen, H.-W. Zan, C.-J. Lu, H.-F. Meng, Modulated gas sensor based on vertical organic diode with blended channel for ppb-regime detection, Sens. Actuators B Chem. 230 (2016) 223–230. doi:10.1016/j.snb.2016.02.030.
[111] Y. Zeng, W. Huang, W. Shi, J. Yu, Enhanced sensing performance of nitrogen dioxide sensor based on organic field-effect transistor with mechanically rubbed pentacene active layer, Appl. Phys. A. 118 (2015) 1279–1285. doi:10.1007/s00339-014-8831-3.
[112] N.S. Ramgir, M. Ghosh, P. Veerender, N. Datta, M. Kaur, D.K. Aswal, S.K. Gupta, Growth and gas sensing characteristics of p- and n-type ZnO nanostructures, Sens. Actuators B Chem. 156 (2011) 875–880. doi:10.1016/j.snb.2011.02.058.
[113] F. Zhang, C. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, D. Zhu, Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin-Coating, Adv. Mater. 25 (2013) 1401–1407. doi:10.1002/adma.201204075.
[114] Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao, L. Zang, Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives, J. Am. Chem. Soc. 132 (2010) 5743–5750. doi:10.1021/ja909797q.
[115] T.-H. Lee, J.-C.-A. Huang, G.L. Pakhomov, T.-F. Guo, T.-C. Wen, Y.-S. Huang, C.-C. Tsou, C.-T. Chung, Y.-C. Lin, Y.-J. Hsu, Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes, Adv. Funct. Mater. 18 (2008) 3036–3042. doi:10.1002/adfm.200800403.
[116] T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, Y.-S. Fu, High-performance polymer light-emitting diodes utilizing modified Al cathode, Appl. Phys. Lett. 87 (2005) 013504. doi:10.1063/1.1984101.
[117] Y.-F. Chang, C.-Y. Chen, F.-T. Luo, Y.-C. Chao, H.-F. Meng, H.-W. Zan, H.-W. Lin, S.-F. Horng, T.-C. Chao, H.-C. Yeh, M.-R. Tseng, Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes, Org. Electron. 13 (2012) 388–393. doi:10.1016/j.orgel.2011.11.008.
[118] J. Yoo, S. Chatterjee, E.D. Wachsman, Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor, Sens. Actuators B Chem. 122 (2007) 644–652. doi:10.1016/j.snb.2006.07.024.
[119] F. Ménil, V. Coillard, C. Lucat, Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines, Sens. Actuators B Chem. 67 (2000) 1–23. doi:10.1016/S0925-4005(00)00401-9.
[120] J.W. Fergus, Materials for high temperature electrochemical NOx gas sensors, Sens. Actuators B Chem. 121 (2007) 652–663. doi:10.1016/j.snb.2006.04.077.
[121] C. Turner, P. Španěl, D. Smith, A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry, Rapid Commun. Mass Spectrom. 20 (2006) 61–68. doi:10.1002/rcm.2275.
[122] R. Ghorbani, F.M. Schmidt, Real-time breath gas analysis of CO and CO2 using an EC-QCL, Appl. Phys. B. 123 (2017). doi:10.1007/s00340-017-6715-x.
[123] T. Hibbard, A.J. Killard, Breath ammonia levels in a normal human population study as determined by photoacoustic laser spectroscopy, J. Breath Res. 5 (2011) 037101. doi:10.1088/1752-7155/5/3/037101.
[124] A.K. Kapoor, U. Kumar, V.R. Balakrishnan, P.K. Basu, Degradation process in organic thin film devices fabricated using P3HT, Pramana. 68 (2007) 489–498.
[125] F.M. Schmidt, O. Vaittinen, M. Metsälä, M. Lehto, C. Forsblom, P.-H. Groop, L. Halonen, Ammonia in breath and emitted from skin, J. Breath Res. 7 (2013) 017109. doi:10.1088/1752-7155/7/1/017109.
電子全文 電子全文(網際網路公開日期:20221114)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔