(3.238.186.43) 您好!臺灣時間:2021/02/28 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏嘉賢
研究生(外文):Wei, Jia-Sien
論文名稱:鐵-29.8wt.%錳-8.6wt.%鋁-1.45wt.%碳合金顯微結構與機械性質探討
論文名稱(外文):Microstructures and Mechanical Properties of Fe-29.8wt.%Mn-8.6wt.%Al-1.45wt.%C Alloy
指導教授:劉增豐
口試日期:2017-08-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:鐵錳鋁碳合金固溶處理時效處理顯微結構機械性質
外文關鍵詞:FeMnAlC Alloysolution heat-treatmentaging treatmentmicrostructuresmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 ii
ABSTRACT v
目錄 viii
圖目錄 x
第一章 前言 1
1-1 Fe-Mn-Al-C合金簡介 1
1-2 完全沃斯田鐵型Fe-Mn-Al-C合金簡介 3
第二章 實驗步驟 8
2-1 合金製備 8
2-1-1 熔煉鑄造 8
2-1-2 熱滾軋 8
2-2 固溶化和時效熱處理 8
2-3 顯微結構分析 9
2-4 機械性質測試及分析 9
2-4-1 硬度測試 9
2-4-2 拉伸測試 10
第三章 結果與討論 13
3-1 鑄錠狀態下之顯微結構 13
3-2 固溶化熱處理下之顯微結構 17
3-3 時效熱處理下之顯微結構 19
3-4 固溶化淬火狀態和不同時間時效後之顯微結構 22
3-5 固溶化淬火狀態和不同時間時效後之拉伸破壞行為 31
3-6 與第一代鋼、第二代鋼和各國預計2025年欲達到第三代先進高
強度鋼(3rdGAHSS,Third Generation Advanced High Strength Steel)之比較 40
第四章 結論 44
參考文獻 47
[1] H. Kim, D.W Suh ,and N. J Kim, “Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties”, Sci. Tech. adv. mater. 14, 2013.
[2] J.B. Duh, W. T. Tsai, J. T. Lee, and H. Chang, “Effect of Potential on the Corrosion Fatigue Crack Growth Rate of Fe—Al—Mn Alloy in 3.5% NaCl Solution”, Corr. Sci, vol. 46, no. 12, 1990, 983-988.
[3] K. H Han ,and W. K. Choo, “Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys”, Metall. Trans, vol. 20A , 1989, 205-214.
[4] F. Yang, R. Song, Y. Li, T. Sun, and K. Wang, “Tensile deformation of low density duplex Fe–Mn–Al–C steel”, Mater.& Design 76, 2015, 32-39.
[5] H. Huang, D. Gan, and P.W.Koa, “Effect of alloying additions on the k phase precipitation in austenitic Fe-Mn-Al-C alloys”, Scri. Metall, vol. 30
, 1993, 499-504.
[6] W. C. Cheng, C. F. Liu, and Y. F. Lai, “Observing the D03 phase in Fe-Mn-Al alloys”, Mater. Sci. & Eng. A337, 2002, 281-286.
[7] D. Raabe, H. springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J. B. Seol, M. Koyama, P. P. Choi, and K. Tsuzaki, “Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe-Mn-Al-C austenitic steels”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1845-1856
[8] J. B. Duh, W. T. Tsai, and J. T. Lee, “ Electrochemocal and corrosion fatigue behavior of FeAlMn alloys in NaCl solution”, Corr. Sci, vol. 44, no. 11, 1998, 810-818.
[9] C. Y. Chao, and C. H. Liu, “Effects of Mn contents on the microstructure and mechanical properties of the Fe–10Al–xMn–1.0C alloy”, Mater. Trans, vol. 43, no. 10, 2002, 2635-2642.
[10] W. S. Yang, and C. M. Wang, “High temperature studies of Fe-Mn-Al-C alloys with different manganese concentration in air and nitrogen”, Mater. Sci. 24, 1989, 3497-3505.
[11] C. J. Wang, and J. G. Duh, “The effect of carbon on the high temperature oxidation of Fe-31Mn-9Al-0.87C alloy”, Mater. Sci. 23, 1988, 3447-3454.
[12] J. B. Seol, D. Raabe, P. Choi, H. S. Park, J. H. Kwak, and C. G. Park, “ Direct evidence for the formation of ordered carbides in a ferrite-based
low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography”, Scr. Mater. 68, 2013, 348-353.
[13] C. J. Wang, and Y. C. Chang, “NaCl-induced hot corrosion of Fe–Mn–Al–C alloys”, Mater. Chem. and Phys.76, 2002, 151-161.
[14] V. Tsakiris, and D.V. Edmonds, “ Martensite and deformation twinning in austenitic steels”, Mater. Sci. & Eng. A273–275, 1999, 430–436.
[15] Y. Sakuma, O. Matsumura, and H. Takechi, “Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and
Their variation with Si and Mn addition” , Metall. Trans A, vol. 22A, 1991, 489-498.
[16] F. Abe, H. Araki, and T. Noda, “Discontinuous precipitation of σ-phase during recrystallisation in cold rolled Fe–10Cr–30Mn austenite” , Mater. Sci. & Tech, vol. 4, 1988, 885-893.
[17] C. Herrera, D. Ponge, and D. Raabe, “Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability”, Acta Mater. 59, 2011, 4653-4664.
[18] I. Kalashnikov, O. Acselrad, A. Shalkevich, and L.C. Pereira, “Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system”, Mater. Eng. & Per. vol. 9, 2000, 597-602.
[19] M. De Meyer, D Vanderschueren, and B. C. De Cooman , “The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels” , ISIJ Int, vol. 39, 1999, 813-822.
[20] G. Frommeyer, and U. Brüx, “Microstructures and Mechanical Properties of High-Strength Fe-Mn-AI-C Light-Weight TRIPLEX Steels”, Steel Research Int. 77, no. 9-10, 2006, 627-633.
[21] B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim, and S.H. Hong, “Effect of aluminium on deformation mode and mechanical properties of austenitic Fe-Mn-Cr-A1-C alloys”, Mater. Sci. & Eng. A197, 1995, 147-156.
[22] J. Speer , D.K. Matlock , B.C. De Cooman, and J.G. Schroth, “Carbon partitioning into austenite after martensite transformation”, Acta Mater. 51, 2003, 2611-2622.
[23] D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, “Ferrite recrystallization and austenite formation in cold-Rolled intercritically annealed steel”, Metall. Trans A, vol. 16A, 1985, 1385-1392.
[24] G. Frommeyer, E.J. Drewes, and B. Engl, “Physical and mechanical
properties of iron-aluminium-(Mn, Si) lightweight steels”, La Revue de Métallurgie-CIT, 2000. 1245-1253.
[25] L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer, “Mechanical properties of Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase”, Inter. 13, 2005, 1256-1262.
[26] R. Rana, C. Liu, and R.K. Ray, “Low-density low-carbon Fe–Al ferritic steels”, Scr. Mater. 68, 2013, 354-359.
[27] D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. KIM, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel”, Metall. Mater. Trans A, vol. 41A, 2010, 397-408.
[28] S. W. Hwanga, J. H. Ji, E. G. Lee, and K. T. Park, “Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight”, Mater. Sci. & Eng. A 528, 2011, 5196-5203.
[29] C. H. Seo, K. H. Kwon, K. Choi, K. H. Kim, J. H. Kwak, S. Leed, and N. J. Kim, “Deformation behavior of ferrite–austenite duplex lightweight
Fe–Mn–Al–C steel”, Scr. Mater. 66, 2012, 519-522.
[30] S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh, and H. N. Han, “Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum”, Scr. Mater. 68, 2013, 365-369.
[31] Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, “High-strength Fe–20Mn–Al–C-based Alloys with Low Density”, ISIJ International, vol. 50, 2010, 893-899.
[32] K. Choi, C. H. Seo, H. Lee, S.K. Kim, J. H. Kwak, K. G. Chin, K.T. Park, and N. J. Kim, “Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel”, Scr. Mater. 63, 2010, 1028–1031.
[33] K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choid, and C. S. Lee, “Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition”, Mater. Sci. & Eng. A527, 2010, 3651-3661.
[34] G. Frommeyer, U. Brüx, and P. Neumann, “Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes”, ISIJ International, vol. 43, no. 3, 2003, 438-446.
[35] S. Chen, R. Rana, A. Haldar, and R. K. Ray, “Current state of Fe-Mn-Al-C low density steels”, Progress in Materials Science, 2017, 1-81.
[36] S. Lee, C. Y. Lee, and Y. K. Lee, “Schaeffler diagram for high Mn steels”, Alloys and Compounds 628, 2015, 46-49.
[37] W. J. Lu, X. F. Zhang, and R. S. Qin, “κ-carbide hardening in a low-density high-Al high-Mn multiphase steel”, Mater. Lett, vol. 138, 2015, 96-99.
[38] E. Mazancová, Z. Jonšta, and K. Mazanec, “Strukturně metalurgické vlastnosti vysokomanganové slitiny Fe-Mn-Al-C”, Hradec nad Moravicí, 13.–15. 5, 2008.
[39] M. Witkowska, A. Z. Lipiec, J. Kowalska, and W. Ratuszek, “Microstructural changes in a high-manganese austenitic Fe-Mn-Al-C steel”, Archives of Metall. &Mater, vol. 59, 2014, 971-975.
[40] I. Gutierrez-Urrutia, and D. Raabe, “High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides”, Mater. Sci. & Tech, vol. 30, no. 9, 2014, 1099-1104.
[41] R. Rana, C. Lahaye, and R. K. Ray, “Overview of lightweight ferrous materials: strategies and promises”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1734-1746.
[42] I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. M. Jourdan, S. Cazottes, and X. Kleber, “Low-density steels: complex metallurgy for automotive applications”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1747-1758.
[43] W. Song, W. Zhang, Jörg von Appen, R. Dronskowski, and W. Bleck, “k-Phase Formation in Fe–Mn–Al–C Austenitic Steels”, Steel Research Int. 86, no. 10, 2015, 1161-1169.
[44] Z.Q. Wu, H. Ding, X. H. An, D. Han, and X. Z. Liao, “Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content”, Mater. Sci. & Eng. A639, 2015, 187-191.
[45] J. Moon, and S. J. Park, “Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels”, Weld. & Join, vol. 33, no. 5, 2015, 31-34
[46] E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe, “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel”, Acta Mater. 116, 2016, 188-199.
[47] D. Hua, L. Huaying, W. Zhiqiang, H. Mingli, L. Haoze, and X. Qibin, “Microstructural evolution and deformation behaviors of Fe–Mn–Al–C steels with different stacking fault energies”, Steel Research Int. 84, no. 12, 2013, 1288-1293.
[48] H. J. Lai, and C. M. Wan, “The study of work hardening in Fe-Mn-A;-C
Alloys”, Mater. Sci. 24, 1989, 2449-2453.
[49] S. C. Chang, and Y. H. Hsiau, “Tensile and fatigue properties of Fe-Mn-Al-C alloys”, Mater. Sci. 24, 1989, 1117-1120.
[50] A. Etienne, V. R. Massardier-Jourdan, S. Cazottes, X. Garat, M.Soler, I. Zuazo, and X. Kleber, “Ferrite effects in Fe-Mn-Al-C triplex steels”, Metall. and Mater. Trans. A, vol. 45A, 2014, 324-334.

[51] K. T. Park, G. Kim, S. K. Kim, S. W. Lee, S. W. Hwang, and C. S. Lee, “On the Transitions of Deformation Modes of Fully Austenitic Steels at Room Temperature”, Met. Mater. Int, vol. 16, no. 1, 2010, 1-6.
[52] W. K. Choo, J. H. Kim, and J. C. Yoon, “Microstructural change in austenitic Fe-30wt.%Mn-7.8wt.%Al-1.3wt.%C initiated by spinodal decomposition and its influence on mechanical properties”, Acta Mater. vol. 45, no. 12, 1997, 4877-4885.
[53] C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D. A. Molodov, “On the deformation behavior of k-carbide-free and k-carbide containing high-Mn light-weight steel”, Acta Mater.122, 2017, 332-343.
[54] K. Lee, S. J. Par, J. Moon, J. Y. Kang, T. H. Lee, and H. N. Hana, “β-Mn formation and aging effect on the fracture behavior of high-Mn
low-density steels”, Scr. Mater, vol. 124, 2016, 193-197.
[55] G. L. Kayak, “Fe-Mn-Al precipitation-hardening austenitic alloys”, Metall,
no. 2, 1969, 95-97.
[56] W. K. Choo, and K. H. Han, “Phase constitution and lattice parameter
relationships in rapidly solidified (Fe0.65Mn0.35)0.83 Al0.17 -xC and Fe3Al-XC
pseudo-binary alloys”, Metall. Trans. A, vol. 16A, 1985, 5-10.
[57] K. H. Han and W. K. Choo, “Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys”, Metall. Trans. A, vol. 20A, 1989, 205-214.
[58] K. H. Han and W. K. Choo, “X-ray diffraction study on the structure of rapidly solidified Fe-Al-C and Fe(Mn,Ni)-Al-C alloys”, Metall. Trans. A, vol. 14A, 1983, 973-975.
[59] I.S. Kalashnikova, O. Acselradb, A. Shalkevicha, L.D. Chumakovac, and L.C. Pereira, “Heat treatment and thermal stability of FeMnAlC alloys”, Mater. Pro. Tech.136, 2003, 72-79.
[60] M.C. Li, H. Chang, P.W. Kao, and D. Gan, “The effect of Mn and Al contents on the solvus of k phase in austenitic Fe-Mn-Al-C alloys”, Mater. Chem. & Phys. 59, 1999, 96-99.
[61] M. F. Ibrahim, E. M. Elgallad, S. Valtierra, H. W. Doty, and F. H. Samuel, “Metallurgical parameters controlling the eutectic silicon charateristics in be-treated Al-Si-Mg alloys”, Mater, 2016.
[62] L. N. Bartlett, and B. R. Avila, “Grain refinement in lightweight advanced high-strength steel castings” Metal, 2016.
[63] ESDEP WG 2 Applied Metallurgy.

[64] K. Choi, C.-H. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K.-T.Park, and N. J. Kim, “Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel”, Scr. Mater, vol. 63, 2010, 1028-1031.
[65] 刘仁东, “Progress of Advanced High Strength Steel in Ansteel.’ Ansteel, Institute of Iron and Steel Research.
[66] S. Keeler, M. Kimchi, P. J. Mooney, “Advanced High-Strength Steels
Application Guidelines”, WorldAutoSteel, 2017, 6.0.
[67] POSCO&Max Planck website
[68] D. J. Branagan, “NanoSteel 3rd Generation AHSS: Auto Evaluation and Technology Expansion.”, NanoSteel, 2014.
[69] X. Sun, “Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach.” , Pacific Northwest, 2013.
[70] U.S DEPARTMENT OF ENERGY, “Lightweight Materials R&D Program.”, 2013, 106.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔