|
[1] H. Kim, D.W Suh ,and N. J Kim, “Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties”, Sci. Tech. adv. mater. 14, 2013. [2] J.B. Duh, W. T. Tsai, J. T. Lee, and H. Chang, “Effect of Potential on the Corrosion Fatigue Crack Growth Rate of Fe—Al—Mn Alloy in 3.5% NaCl Solution”, Corr. Sci, vol. 46, no. 12, 1990, 983-988. [3] K. H Han ,and W. K. Choo, “Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys”, Metall. Trans, vol. 20A , 1989, 205-214. [4] F. Yang, R. Song, Y. Li, T. Sun, and K. Wang, “Tensile deformation of low density duplex Fe–Mn–Al–C steel”, Mater.& Design 76, 2015, 32-39. [5] H. Huang, D. Gan, and P.W.Koa, “Effect of alloying additions on the k phase precipitation in austenitic Fe-Mn-Al-C alloys”, Scri. Metall, vol. 30 , 1993, 499-504. [6] W. C. Cheng, C. F. Liu, and Y. F. Lai, “Observing the D03 phase in Fe-Mn-Al alloys”, Mater. Sci. & Eng. A337, 2002, 281-286. [7] D. Raabe, H. springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J. B. Seol, M. Koyama, P. P. Choi, and K. Tsuzaki, “Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe-Mn-Al-C austenitic steels”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1845-1856 [8] J. B. Duh, W. T. Tsai, and J. T. Lee, “ Electrochemocal and corrosion fatigue behavior of FeAlMn alloys in NaCl solution”, Corr. Sci, vol. 44, no. 11, 1998, 810-818. [9] C. Y. Chao, and C. H. Liu, “Effects of Mn contents on the microstructure and mechanical properties of the Fe–10Al–xMn–1.0C alloy”, Mater. Trans, vol. 43, no. 10, 2002, 2635-2642. [10] W. S. Yang, and C. M. Wang, “High temperature studies of Fe-Mn-Al-C alloys with different manganese concentration in air and nitrogen”, Mater. Sci. 24, 1989, 3497-3505. [11] C. J. Wang, and J. G. Duh, “The effect of carbon on the high temperature oxidation of Fe-31Mn-9Al-0.87C alloy”, Mater. Sci. 23, 1988, 3447-3454. [12] J. B. Seol, D. Raabe, P. Choi, H. S. Park, J. H. Kwak, and C. G. Park, “ Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography”, Scr. Mater. 68, 2013, 348-353. [13] C. J. Wang, and Y. C. Chang, “NaCl-induced hot corrosion of Fe–Mn–Al–C alloys”, Mater. Chem. and Phys.76, 2002, 151-161. [14] V. Tsakiris, and D.V. Edmonds, “ Martensite and deformation twinning in austenitic steels”, Mater. Sci. & Eng. A273–275, 1999, 430–436. [15] Y. Sakuma, O. Matsumura, and H. Takechi, “Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and Their variation with Si and Mn addition” , Metall. Trans A, vol. 22A, 1991, 489-498. [16] F. Abe, H. Araki, and T. Noda, “Discontinuous precipitation of σ-phase during recrystallisation in cold rolled Fe–10Cr–30Mn austenite” , Mater. Sci. & Tech, vol. 4, 1988, 885-893. [17] C. Herrera, D. Ponge, and D. Raabe, “Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability”, Acta Mater. 59, 2011, 4653-4664. [18] I. Kalashnikov, O. Acselrad, A. Shalkevich, and L.C. Pereira, “Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system”, Mater. Eng. & Per. vol. 9, 2000, 597-602. [19] M. De Meyer, D Vanderschueren, and B. C. De Cooman , “The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels” , ISIJ Int, vol. 39, 1999, 813-822. [20] G. Frommeyer, and U. Brüx, “Microstructures and Mechanical Properties of High-Strength Fe-Mn-AI-C Light-Weight TRIPLEX Steels”, Steel Research Int. 77, no. 9-10, 2006, 627-633. [21] B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim, and S.H. Hong, “Effect of aluminium on deformation mode and mechanical properties of austenitic Fe-Mn-Cr-A1-C alloys”, Mater. Sci. & Eng. A197, 1995, 147-156. [22] J. Speer , D.K. Matlock , B.C. De Cooman, and J.G. Schroth, “Carbon partitioning into austenite after martensite transformation”, Acta Mater. 51, 2003, 2611-2622. [23] D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, “Ferrite recrystallization and austenite formation in cold-Rolled intercritically annealed steel”, Metall. Trans A, vol. 16A, 1985, 1385-1392. [24] G. Frommeyer, E.J. Drewes, and B. Engl, “Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels”, La Revue de Métallurgie-CIT, 2000. 1245-1253. [25] L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer, “Mechanical properties of Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase”, Inter. 13, 2005, 1256-1262. [26] R. Rana, C. Liu, and R.K. Ray, “Low-density low-carbon Fe–Al ferritic steels”, Scr. Mater. 68, 2013, 354-359. [27] D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. KIM, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel”, Metall. Mater. Trans A, vol. 41A, 2010, 397-408. [28] S. W. Hwanga, J. H. Ji, E. G. Lee, and K. T. Park, “Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight”, Mater. Sci. & Eng. A 528, 2011, 5196-5203. [29] C. H. Seo, K. H. Kwon, K. Choi, K. H. Kim, J. H. Kwak, S. Leed, and N. J. Kim, “Deformation behavior of ferrite–austenite duplex lightweight Fe–Mn–Al–C steel”, Scr. Mater. 66, 2012, 519-522. [30] S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh, and H. N. Han, “Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum”, Scr. Mater. 68, 2013, 365-369. [31] Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, “High-strength Fe–20Mn–Al–C-based Alloys with Low Density”, ISIJ International, vol. 50, 2010, 893-899. [32] K. Choi, C. H. Seo, H. Lee, S.K. Kim, J. H. Kwak, K. G. Chin, K.T. Park, and N. J. Kim, “Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel”, Scr. Mater. 63, 2010, 1028–1031. [33] K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choid, and C. S. Lee, “Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition”, Mater. Sci. & Eng. A527, 2010, 3651-3661. [34] G. Frommeyer, U. Brüx, and P. Neumann, “Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes”, ISIJ International, vol. 43, no. 3, 2003, 438-446. [35] S. Chen, R. Rana, A. Haldar, and R. K. Ray, “Current state of Fe-Mn-Al-C low density steels”, Progress in Materials Science, 2017, 1-81. [36] S. Lee, C. Y. Lee, and Y. K. Lee, “Schaeffler diagram for high Mn steels”, Alloys and Compounds 628, 2015, 46-49. [37] W. J. Lu, X. F. Zhang, and R. S. Qin, “κ-carbide hardening in a low-density high-Al high-Mn multiphase steel”, Mater. Lett, vol. 138, 2015, 96-99. [38] E. Mazancová, Z. Jonšta, and K. Mazanec, “Strukturně metalurgické vlastnosti vysokomanganové slitiny Fe-Mn-Al-C”, Hradec nad Moravicí, 13.–15. 5, 2008. [39] M. Witkowska, A. Z. Lipiec, J. Kowalska, and W. Ratuszek, “Microstructural changes in a high-manganese austenitic Fe-Mn-Al-C steel”, Archives of Metall. &Mater, vol. 59, 2014, 971-975. [40] I. Gutierrez-Urrutia, and D. Raabe, “High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides”, Mater. Sci. & Tech, vol. 30, no. 9, 2014, 1099-1104. [41] R. Rana, C. Lahaye, and R. K. Ray, “Overview of lightweight ferrous materials: strategies and promises”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1734-1746. [42] I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. M. Jourdan, S. Cazottes, and X. Kleber, “Low-density steels: complex metallurgy for automotive applications”, The Minerals, Metals & Materials Society, vol. 66, no. 9, 2014, 1747-1758. [43] W. Song, W. Zhang, Jörg von Appen, R. Dronskowski, and W. Bleck, “k-Phase Formation in Fe–Mn–Al–C Austenitic Steels”, Steel Research Int. 86, no. 10, 2015, 1161-1169. [44] Z.Q. Wu, H. Ding, X. H. An, D. Han, and X. Z. Liao, “Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content”, Mater. Sci. & Eng. A639, 2015, 187-191. [45] J. Moon, and S. J. Park, “Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels”, Weld. & Join, vol. 33, no. 5, 2015, 31-34 [46] E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe, “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel”, Acta Mater. 116, 2016, 188-199. [47] D. Hua, L. Huaying, W. Zhiqiang, H. Mingli, L. Haoze, and X. Qibin, “Microstructural evolution and deformation behaviors of Fe–Mn–Al–C steels with different stacking fault energies”, Steel Research Int. 84, no. 12, 2013, 1288-1293. [48] H. J. Lai, and C. M. Wan, “The study of work hardening in Fe-Mn-A;-C Alloys”, Mater. Sci. 24, 1989, 2449-2453. [49] S. C. Chang, and Y. H. Hsiau, “Tensile and fatigue properties of Fe-Mn-Al-C alloys”, Mater. Sci. 24, 1989, 1117-1120. [50] A. Etienne, V. R. Massardier-Jourdan, S. Cazottes, X. Garat, M.Soler, I. Zuazo, and X. Kleber, “Ferrite effects in Fe-Mn-Al-C triplex steels”, Metall. and Mater. Trans. A, vol. 45A, 2014, 324-334.
[51] K. T. Park, G. Kim, S. K. Kim, S. W. Lee, S. W. Hwang, and C. S. Lee, “On the Transitions of Deformation Modes of Fully Austenitic Steels at Room Temperature”, Met. Mater. Int, vol. 16, no. 1, 2010, 1-6. [52] W. K. Choo, J. H. Kim, and J. C. Yoon, “Microstructural change in austenitic Fe-30wt.%Mn-7.8wt.%Al-1.3wt.%C initiated by spinodal decomposition and its influence on mechanical properties”, Acta Mater. vol. 45, no. 12, 1997, 4877-4885. [53] C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D. A. Molodov, “On the deformation behavior of k-carbide-free and k-carbide containing high-Mn light-weight steel”, Acta Mater.122, 2017, 332-343. [54] K. Lee, S. J. Par, J. Moon, J. Y. Kang, T. H. Lee, and H. N. Hana, “β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels”, Scr. Mater, vol. 124, 2016, 193-197. [55] G. L. Kayak, “Fe-Mn-Al precipitation-hardening austenitic alloys”, Metall, no. 2, 1969, 95-97. [56] W. K. Choo, and K. H. Han, “Phase constitution and lattice parameter relationships in rapidly solidified (Fe0.65Mn0.35)0.83 Al0.17 -xC and Fe3Al-XC pseudo-binary alloys”, Metall. Trans. A, vol. 16A, 1985, 5-10. [57] K. H. Han and W. K. Choo, “Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys”, Metall. Trans. A, vol. 20A, 1989, 205-214. [58] K. H. Han and W. K. Choo, “X-ray diffraction study on the structure of rapidly solidified Fe-Al-C and Fe(Mn,Ni)-Al-C alloys”, Metall. Trans. A, vol. 14A, 1983, 973-975. [59] I.S. Kalashnikova, O. Acselradb, A. Shalkevicha, L.D. Chumakovac, and L.C. Pereira, “Heat treatment and thermal stability of FeMnAlC alloys”, Mater. Pro. Tech.136, 2003, 72-79. [60] M.C. Li, H. Chang, P.W. Kao, and D. Gan, “The effect of Mn and Al contents on the solvus of k phase in austenitic Fe-Mn-Al-C alloys”, Mater. Chem. & Phys. 59, 1999, 96-99. [61] M. F. Ibrahim, E. M. Elgallad, S. Valtierra, H. W. Doty, and F. H. Samuel, “Metallurgical parameters controlling the eutectic silicon charateristics in be-treated Al-Si-Mg alloys”, Mater, 2016. [62] L. N. Bartlett, and B. R. Avila, “Grain refinement in lightweight advanced high-strength steel castings” Metal, 2016. [63] ESDEP WG 2 Applied Metallurgy.
[64] K. Choi, C.-H. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K.-T.Park, and N. J. Kim, “Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel”, Scr. Mater, vol. 63, 2010, 1028-1031. [65] 刘仁东, “Progress of Advanced High Strength Steel in Ansteel.’ Ansteel, Institute of Iron and Steel Research. [66] S. Keeler, M. Kimchi, P. J. Mooney, “Advanced High-Strength Steels Application Guidelines”, WorldAutoSteel, 2017, 6.0. [67] POSCO&Max Planck website [68] D. J. Branagan, “NanoSteel 3rd Generation AHSS: Auto Evaluation and Technology Expansion.”, NanoSteel, 2014. [69] X. Sun, “Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach.” , Pacific Northwest, 2013. [70] U.S DEPARTMENT OF ENERGY, “Lightweight Materials R&D Program.”, 2013, 106.
|