跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雁茹
研究生(外文):Chang, Yan-Ru
論文名稱:浴銅靈摻雜入富勒烯應用於鈣鈦礦太陽能電池電子傳輸層之研究
論文名稱(外文):Bathocuproine Doped in PCBM as an Electron Transport Layer for Perovskite Photovoltaic Application
指導教授:韋光華韋光華引用關係
口試委員:黃華宗陳信龍曹正熙
口試日期:2017-08-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:47
中文關鍵詞:鈣鈦礦電子傳輸層浴銅靈太陽能電池光伏打元件
外文關鍵詞:PerovskiteElectron Transport LayerBathocuproineSolar cellsPhotovoltaic Application
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究中利用摻雜浴銅靈(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, bathocuproine, BCP)於富勒烯衍生物( [6,6]phenyl-C61-butyric acid methyl ester, PC61BM)中,成功提升鈣鈦礦太陽能電池元件光電轉換效率。經由BCP的摻雜能減少電子傳輸層(Electron Transport Layer, ETL)薄膜缺陷及降低載子再結合的機率,進而提高元件之開路電壓,而短路電流和填充因子的提升則來自於較佳的界面相容性,當摻雜0.5wt% BCP於PC61BM作為電子傳輸層時,元件效率可達14.3%,相較於未摻雜時有52%的提升率。
我們以ITO/PEDOT:PSS/CH3NH3PbI3-xClx/PC61BM:BCP/Ag作為元件結構主體,使用國家同步輻射研究中心(NSRRC)之低掠角小角度X光散射(GISAXS)進行電子傳輸層團簇大小研究,輔以原子力顯微鏡(AFM)、掃描電子顯微鏡(SEM)、光激發螢光光譜儀(PL)、紫外光-可見光光譜(UV-vis)等儀器,用以探討影響鈣鈦礦太陽能電池元件轉換效率的成因。
In this study, we doped different amounts of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, BCP) in [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and successfully improved the power conversion efficiency (PCE) of perovskite photovoltaic device. With the incorporation of BCP, we found that it can not only ameliorate the film formation property of PCBM and the interfacial contact but facilitate the charge transport and separation at the interface through effectively passivating the surface trap states of perovskite as well. These physical, optical, morphological, and electronic improvements result in higher open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF). Therefore, the PCE is improved from 9.4% to 14.3%.
The planar-heterojunction structure of the photovoltaic devices having the confugutation ITO/PEDOT:PSS/CH3NH3PbI3-xClx/PC61BM:BCP/Ag. In order to systematically investigate the effect of BCP doping, we use a combination of characterizations, including grazing-incidence small-angle X-ray scattering (GISAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and ultraviolet–visible spectroscopy (UV-vis). We can understand that, as a result, this approach of incorporating small molecule into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced device efficiency.
目 錄
摘 要…………………………………………………………………i
Abstract………………………………………………………………ii
誌 謝………………………………………………………………..iii
目 錄………………………………………………………………..iv
圖目錄……………………………………………………………....viii
表目錄………………………………………………………………...x
第一章 緒論
1.1 前言……………………………………………………………….1
1.2 太陽能電池簡介………………………………………………….3
1.2.1矽晶太陽能電池……………………………………………………...3
1.2.2無機化合物半導體太陽能電池……………………………………...3
1.2.3染料敏化太陽能電池………………………………………………...4
1.2.4有機半導體太陽能電池……………………………………………...5
1.2.5鈣鈦礦太陽能電池…………………………………………………...5
v
第二章 理論基礎與文獻回顧
2.1鈣鈦礦光伏元件簡介與原理…………………………………….9
2.1.1鈣鈦礦光子-電子轉換機制…………………………………………11
(1)吸收光能產生激子………………………………………………..13
(2)激子擴散…………………..………………………………………13
(3)電荷分離…………………...……………………………………...14
(4)電荷傳輸及收集…………………………………………………..14
2.1.2元件轉換效率重要參數…………………………………………….14
(1)開路電壓…………………………………………………………..15
(2)短路電流…………………………………………………………..16
(3)填充因子…………………………………………………………..16
(4)能量轉換效率……………………………………………………..17
(5)外部量子轉換效率………………………………………………..18
2.2鈣鈦礦太陽能電池結構與薄膜發展…………………………...19
2.2.1介觀鈣鈦礦太陽能電池……………….……………………………19
2.2.2正式平面異質(n-i-p)鈣鈦礦太陽能電池…………………………...20
2.2.3反式平面異質(p-i-n)鈣鈦礦太陽能電池…………………………...21
2.3同步輻射光源………………………………………………...…23
vi
第三章 實驗步驟與儀器量測
3.1研究動機………………………………………………………...25
3.2實驗藥品………………………………………………………...27
3.3元件製作……………………………………………………..….27
3.3.1氧化銦錫(ITO)玻璃基板之製備…………………………………....27
3.3.2有機電洞傳導層製備……………………………….……………....28
3.3.3鈣鈦礦層製備……………………………………………………….28
3.3.4電子傳輸層製備…………………………………………………….28
3.3.5電極蒸鍍與元件量測……………………………………………….28
3.4實驗儀器與分析………………………………………………...29
3.4.1元件效率量測…………..……………………………….…………..29
3.4.2低掠角小角度X光散射…………...……………………………….29
3.4.3原子力顯微鏡……………………………………………………….29
3.4.4掃描式電子顯微鏡………………………………………………….30
3.4.5光激發螢光光譜儀……………………………….…………………30
3.4.6紫外光-可見光光譜…………….……..……………….……………30
3.4.7外部量子效率……………………………………………………….30
vii
第四章 實驗結果與討論
4.1元件結構………………………………………………………...31
4.2元件效率分析……...……………………….…………………...32
4.3外部量子效率分析…………………………………………...…33
4.4薄膜微結構分析…………………………………………….......34
4.4.1低掠角小角度X光散射分析………………………………...…….34
4.4.2原子力顯微鏡分析……………..…………………………….……..37
4.4.3掃描式電子顯微鏡分析……………………………………….……39
4.5薄膜光學性質分析………………………………………..…….40
4.4.1光激發螢光光譜儀分析…………………………………………….40
4.4.2紫外-可見光吸收光譜分析………………………….…………..….41
第五章 結論.......................................................................................43
第六章 參考文獻……………………………………….……….44
第六章 參考文獻
(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131, 6050-6051.
(2) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591.
(3) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
(4) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
(5) Liu, X.; Zhao, W.; Cui, H.; Xie, Y. a.; Wang, Y.; Xu, T.; Huang, F. Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers 2015, 2, 315-335.
(6) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.
(7) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.
(8) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
(9) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. Bright light-emitting diodes based on organometal halide perovskite. Nature nanotechnology 2014, 9, 687-692.
(10) Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes. Advanced materials 2015, 27, 1248-1254.
(11) Yu, J. C.; Kim, D. B.; Baek, G.; Lee, B. R.; Jung, E. D.; Lee, S.; Chu, J. H.; Lee, D. K.; Choi, K. J.; Cho, S. High‐Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Advanced materials 2015, 27, 3492-3500.
45
(12) Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature communications 2014, 5.
(13) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High‐performance perovskite–graphene hybrid photodetector. Advanced materials 2015, 27, 41-46.
(14) Lin, Q.; Armin, A.; Lyons, D. M.; Burn, P. L.; Meredith, P. Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging. Advanced materials 2015, 27, 2060-2064.
(15) O’regan, B.; Grfitzeli, M. A low-cost, high-efficiency solar cell based on dye-sensitized. nature 1991, 353, 737-740.
(16) Kim, Y.-H.; Lee, I.-K.; Song, Y.-S.; Lee, M.-H.; Kim, B.-Y.; Cho, N.-I.; Lee, D. Y. Influence of TiO2 coating thickness on energy conversion efficiency of dye-sensitized solar cells. Electronic Materials Letters 2014, 10, 445-449.
(17) Park, J.; Lee, M. Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer. Electronic Materials Letters 2015, 11, 271-275.
(18) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
(19) Chen, Y.; Li, B.; Huang, W.; Gao, D.; Liang, Z. Efficient and reproducible CH 3 NH 3 PbI 3− x (SCN) x perovskite based planar solar cells. Chemical Communications 2015, 51, 11997-11999.
(20) Yang, S.; Liu, W.; Zuo, L.; Zhang, X.; Ye, T.; Chen, J.; Li, C.-Z.; Wu, G.; Chen, H. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. Journal of Materials Chemistry A 2016, 4, 9430-9436.
(21) Xiao, Z.; Meng, W.; Saparov, B.; Duan, H.-S.; Wang, C.; Feng, C.; Liao, W.; Ke, W.; Zhao, D.; Wang, J. Photovoltaic Properties of Two-Dimensional (CH3NH3) 2Pb (SCN) 2I2 Perovskite: A Combined Experimental and Density Functional Theory Study. The journal of physical chemistry letters 2016, 7, 1213-1218.
(22) Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature communications 2016, 7.
(23) Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahen, D.; Kahn, A. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy & Environmental Science 2014, 7, 1377-1381.
(24) Wang, Q. K.; Wang, R. B.; Shen, P. F.; Li, C.; Li, Y. Q.; Liu, L. J.; Duhm, S.; Tang, J. X. Energy level offsets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation. Advanced Materials Interfaces 2015, 2.
46
(25) Schulz, P.; Whittaker‐Brooks, L. L.; MacLeod, B. A.; Olson, D. C.; Loo, Y. L.; Kahn, A. Electronic level alignment in inverted organometal perovskite solar cells. Advanced Materials Interfaces 2015, 2.
(26) Kim, H.; Lim, K.-G.; Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 2016, 9, 12-30.
(27) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chemical reviews 2007, 107, 1324-1338.
(28) Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Physical Review Applied 2014, 2, 034007.
(29) Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. The Journal of Physical Chemistry Letters 2013, 4, 897-902.
(30) Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J.; Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy & Environmental Science 2014, 7, 2614-2618.
(31) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science 2013, 6, 1480-1485.
(32) Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012, 14, 779-789.
(33) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
(34) Muller-Buschbaum, P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 2014, 26, 7692-7709.
(35) Sun, C.; Wu, Z.; Yip, H. L.; Zhang, H.; Jiang, X. F.; Xue, Q.; Hu, Z.; Hu, Z.; Shen, Y.; Wang, M. Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells. Advanced Energy Materials 2016, 6.
(36) Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H. High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer. Journal of Materials Chemistry A 2015, 3, 9098-9102.
(37) Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells. Advanced materials 2013, 25, 3727-3732.
47
(38) Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy & Environmental Science 2014, 7, 2359-2365.
(39) Peumans, P.; Bulović, V.; Forrest, S. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters 2000, 76, 2650-2652.
(40) Guo, F.; Xiao, Z.; Huang, J. Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross‐Linkable Buffer Layer. Advanced Optical Materials 2013, 1, 289-294.
(41) Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature nanotechnology 2012, 7, 798-802.
(42) Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Advanced materials 2014, 26, 6503-6509.
(43) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS nano 2014, 8, 9815-9821.
(44) Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters 2014, 104, 063903.
(45) Shkrob, I. A.; Marin, T. W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. The journal of physical chemistry letters 2014, 5, 1066-1071.
(46) Lin, H.-K.; Su, Y.-W.; Chen, H.-C.; Huang, Y.-J.; Wei, K.-H. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics. ACS Applied Materials & Interfaces 2016, 8, 24603-24611.
(47) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
(48) Schlipf, J.; Docampo, P.; Schaffer, C. J.; Körstgens, V.; Bießmann, L.; Hanusch, F.; Giesbrecht, N.; Bernstorff, S.; Bein, T.; Müller-Buschbaum, P. A closer look into two-step perovskite conversion with X-ray scattering. The journal of physical chemistry letters 2015, 6, 1265-1269.
(49) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. The journal of physical chemistry letters 2014, 5, 1421-1426.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊