|
參考文獻 1. Dimitrov, D.; Schreve, K.; de Beer, N., Advances in three dimensional printing – state of the art and future perspectives. Rapid Prototyping Journal 2006, 12 (3), 136- 147. 2. Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M., Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014, 86 (7), 3240-53. 3. contributors, W. 3D printing. https://en.wikipedia.org/w/index.php?title=3D_printing&oldid=789479245. 4. contributors, W. Computer-aided design. https://en.wikipedia.org/w/index.php?title=Computeraided_design&oldid=787379246. 5. O'Neill, P. F.; Ben Azouz, A.; Vazquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D., Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics 2014, 8 (5), 052112. 6. Lin, H.; Zhang, D.; Alexander, P. G.; Yang, G.; Tan, J.; Cheng, A. W.; Tuan, R. S., Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013, 34 (2), 331-9. 7. Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A. W., Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 2016, 503 (1-2), 207-12. 8. Zhang, A. P.; Qu, X.; Soman, P.; Hribar, K. C.; Lee, J. W.; Chen, S.; He, S., Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 2012, 24 (31), 4266-70. 9. Zorlutuna, P.; Annabi, N.; Camci-Unal, G.; Nikkhah, M.; Cha, J. M.; Nichol, J. 161 W.; Manbachi, A.; Bae, H.; Chen, S.; Khademhosseini, A., Microfabricated biomaterials for engineering 3D tissues. Adv Mater 2012, 24 (14), 1782-804. 10. Garrett, B., 3D Printing: New Economic Paradigms and Strategic Shifts. Global Policy 2014, 5 (1), 70-75. 11. Petrovic, V.; Vicente Haro Gonzalez, J.; Jordá Ferrando, O.; Delgado Gordillo, J.; Ramón Blasco Puchades, J.; Portolés Griñan, L., Additive layered manufacturing: sectors of industrial application shown through case studies. International Journal of Production Research 2011, 49 (4), 1061-1079. 12. Stansbury, J. W.; Idacavage, M. J., 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016, 32 (1), 54-64. 13. Kim, G. D.; Oh, Y. T., A benchmark study on rapid prototyping processes and machines: Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2008, 222 (2), 201-215. 14. Guo, S. Z.; Gosselin, F.; Guerin, N.; Lanouette, A. M.; Heuzey, M. C.; Therriault, D., Solvent-cast three-dimensional printing of multifunctional microsystems. Small 2013, 9 (24), 4118-22. 15. Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A.; Samulski, E. T.; DeSimone, J. M., Additive manufacturing. Continuous liquid interface production of 3D objects. Science 2015, 347 (6228), 1349-52. 16. Leng, S.; McGee, K.; Morris, J.; Alexander, A.; Kuhlmann, J.; Vrieze, T.; McCollough, C. H.; Matsumoto, J., Anatomic modeling using 3D printing: quality assurance and optimization. 3D Printing in Medicine 2017, 3 (1). 17. Kang, H. W.; Park, J. H.; Kang, T. Y.; Seol, Y. J.; Cho, D. W., Unit cell-based computer-aided manufacturing system for tissue engineering. Biofabrication 2012, 4 162 (1), 015005. 18. Banik, I.; Bhowmick, A. K., Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiation Physics and Chemistry 2000, 58 (3), 293-298. 19. Gou, M.; Qu, X.; Zhu, W.; Xiang, M.; Yang, J.; Zhang, K.; Wei, Y.; Chen, S., Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun 2014, 5, 3774. 20. Larson, K. A.; Luo, J.; Yousuf, A.; Ashton-Miller, J. A.; DeLancey, J. O. L., Measurement of the 3D geometry of the fascial arches in women with a unilateral levator defect and “architectural distortion”. International urogynecology journal 2012, 23 (1), 57-63. 21. Kim, Y. C.; Hong, S.; Sun, H.; Kim, M. G.; Choi, K.; Cho, J.; Choi, H. R.; Koo, J. C.; Moon, H.; Byun, D.; Kim, K. J.; Suhr, J.; Kim, S. H.; Nam, J.-D., UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal 2017, 93, 140-147. 22. Lawson, J. H.; Glickman, M. H.; Ilzecki, M.; Jakimowicz, T.; Jaroszynski, A.; Peden, E. K.; Pilgrim, A. J.; Prichard, H. L.; Guziewicz, M.; Przywara, S.; Szmidt, J.; Turek, J.; Witkiewicz, W.; Zapotoczny, N.; Zubilewicz, T.; Niklason, L. E., Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. The Lancet 2016, 387 (10032), 2026- 2034. 23. Hoshi, R. A.; Van Lith, R.; Jen, M. C.; Allen, J. B.; Lapidos, K. A.; Ameer, G., The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 2013, 34 (1), 30-41. 24. Prichard, H. L.; Manson, R. J.; DiBernardo, L.; Niklason, L. E.; Lawson, J. H.; Dahl, S. L., An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 2011, 4 (5), 674-82. 163 25. Kim, H.-H.; Choi, Y. H.; Suh, S.-H.; Lee, J. S.; Jung, Y. H.; So, Y. H., Arteriovenous Graft Modeling and Hemodynamic Interpretation. Open Journal of Fluid Dynamics 2012, 02 (04), 324-330. 26. Donati, G.; Cianciolo, G.; Mauro, R.; Rucci, P.; Scrivo, A.; Marchetti, A.; Giampalma, E.; Golfieri, R.; Panicali, L.; Iorio, M.; Stella, A.; La Manna, G.; Stefoni, S., PTFE grafts versus tunneled cuffed catheters for hemodialysis: which is the second choice when arteriovenous fistula is not feasible? Artif Organs 2015, 39 (2), 134-41. 27. Berardinelli, L., Grafts and graft materials as vascular substitutes for haemodialysis access construction. Eur J Vasc Endovasc Surg 2006, 32 (2), 203-11. 28. Yin, A.; Zhang, K.; McClure, M. J.; Huang, C.; Wu, J.; Fang, J.; Mo, X.; Bowlin, G. L.; Al-Deyab, S. S.; El-Newehy, M., Electrospinning collagen/chitosan/poly(Llactic acid-co-epsilon-caprolactone) to form a vascular graft: mechanical and biological characterization. J Biomed Mater Res A 2013, 101 (5), 1292-301. 29. Hasan, A.; Memic, A.; Annabi, N.; Hossain, M.; Paul, A.; Dokmeci, M. R.; Dehghani, F.; Khademhosseini, A., Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 2014, 10 (1), 11 -25. 30. Shin, M.; Matsuda, K.; Ishii, O.; Terai, H.; Kaazempur-Mofrad, M.; Borenstein, J.; Detmar, M.; Vacanti, J. P., Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 2004, 6 (4), 269-78. 31. Yao, Y.; Wang, J.; Cui, Y.; Xu, R.; Wang, Z.; Zhang, J.; Wang, K.; Li, Y.; Zhao, Q.; Kong, D., Effect of sustained heparin release from PCL/chitosan hybrid smalldiameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater 2014, 10 (6), 2739-49. 32. Kaigler, D.; Silva, E. A.; Mooney, D. J., Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol 2013, 84 (2), 230-8. 164 33. Kosor, B. Y.; Artunc, C.; Sahan, H., Adhesive retention of experimental fiberreinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses. J Prosthet Dent 2015, 114 (1), 142-8. 34. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A., 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013, 25 (33), 4539-43. 35. Ethier, C. R.; Prakash, S.; Steinman, D. A.; Leask, R. L.; Couch, G. G.; Ojha, M., Steady flow separation patterns in a 45 degree junction. Journal of Fluid Mechanics 2000, 411 (32), 1-38. 36. Ha, H.; Hwang, D.; Choi, W. R.; Baek, J.; Lee, S. J., Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow. PLoS One 2014, 9 (10), e111047. 37. Loth, F.; Fischer, P. F.; Bassiouny, H. S., Blood Flow in End-to-Side Anastomoses. Annual Review of Fluid Mechanics 2008, 40 (1), 367-393. 38. Seo, J.; Kushner, D. I.; Hickner, M. A., 3D Printing of Micropatterned Anion Exchange Membranes. ACS Appl Mater Interfaces 2016, 8 (26), 16656-63. 39. Whittaker, J. L.; Dutta, N. K.; Elvin, C. M.; Choudhury, N. R., Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J. Mater. Chem. B 2015, 3 (32), 6576-6579. 40. Chia, H. N.; Wu, B. M., Recent advances in 3D printing of biomaterials. J Biol Eng 2015, 9, 4. 41. Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E.; Galakatos, A.; Pryor, H.; Pomerantseva, I.; Masiakos, P. T.; Faquin, W.; Zumbuehl, A.; Hong, S.; Borenstein, J.; Vacanti, J.; Langer, R.; Karp, J. M., A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci U S A 2008, 105 (7), 2307-12. 42. Costa-Almeida, R.; Gasperini, L.; Borges, J.; Babo, P. S.; Rodrigues, M. T.; 165 Mano, J. F.; Reis, R. L.; Gomes, M. E., Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science & Engineering 2016, 3 (7), 1322-1331. 43. Feng, Q.; Wei, K.; Lin, S.; Xu, Z.; Sun, Y.; Shi, P.; Li, G.; Bian, L., Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 2016, 101, 217-28. 44. Meineke, G.; Hermans, M.; Klos, J.; Lenenbach, A.; Noll, R., A microfluidic opto-caloric switch for sorting of particles by using 3D-hydrodynamic focusing based on SLE fabrication capabilities. Lab Chip 2016, 16 (5), 820-8. 45. Tseng, W. C.; Jong, C. M., Improved stability of polycationic vector by dextrangrafted branched polyethylenimine. Biomacromolecules 2003, 4 (5), 1277-84. 46. Xu, G.; Wang, X.; Deng, C.; Teng, X.; Suuronen, E. J.; Shen, Z.; Zhong, Z., Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 2015, 15, 55-64. 47. He, S.; J. Yaszemski, M.; Yasko, A. W.; Engel, P. S.; Mikos, A. G., Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 2000, 21 (23), 2389-2394. 48. He, H.; Adzima, B.; Zhong, M.; Averick, S.; Koepsel, R.; Murata, H.; Russell, A.; Luebke, D.; Takahara, A.; Nulwala, H.; Matyjaszewski, K., Multifunctional photocrosslinked polymeric ionic hydrogel films. Polymer Chemistry 2014, 5 (8), 2824. 49. Cuchiara, M. P.; Allen, A. C.; Chen, T. M.; Miller, J. S.; West, J. L., Multilayer microfluidic PEGDA hydrogels. Biomaterials 2010, 31 (21), 5491-7. 50. Wise, S. G.; Byrom, M. J.; Waterhouse, A.; Bannon, P. G.; Weiss, A. S.; Ng, M. K., A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft 166 with tailored mechanical properties. Acta Biomater 2011, 7 (1), 295-303. 51. Kent, N. J.; Jolivet, L.; O’Neill, P.; Brabazon, D., An evaluation of components manufactured from a range of materials, fabricated using PolyJet technology. Advances in Materials and Processing Technologies 2017, 3 (3), 318-329. 52. Gaharwar, A. K.; Arpanaei, A.; Andresen, T. L.; Dolatshahi-Pirouz, A., 3D Biomaterial Microarrays for Regenerative Medicine: Current State-of-the-Art, Emerging Directions and Future Trends. Adv Mater 2016, 28 (4), 771-81. 53. Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J., Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408 (6815), 998- 1000. 54. Hoffman-Kim, D.; Mitchel, J. A.; Bellamkonda, R. V., Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 2010, 12, 203-31. 55. Kolesky, D. B.; Truby, R. L.; Gladman, A. S.; Busbee, T. A.; Homan, K. A.; Lewis, J. A., 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014, 26 (19), 3124-30. 56. Derby, B., Printing and prototyping of tissues and scaffolds. Science 2012, 338 (6109), 921-6. 57. Grogan, S. P.; Chung, P. H.; Soman, P.; Chen, P.; Lotz, M. K.; Chen, S.; D'Lima, D. D., Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 2013, 9 (7), 7218-26. 58. Soman, P.; Chung, P. H.; Zhang, A. P.; Chen, S., Digital microfabrication of userdefined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 2013, 110 (11), 3038-47. 59. Park, J. Y.; Shim, J.-H.; Choi, S.-A.; Jang, J.; Kim, M.; Lee, S. H.; Cho, D.-W., 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J. Mater. Chem. B 2015, 3 (27), 5415- 167 5425. 60. Sanders, W. G.; Hogrebe, P. C.; Grainger, D. W.; Cheung, A. K.; Terry, C. M., A biodegradable perivascular wrap for controlled, local and directed drug delivery. J Control Release 2012, 161 (1), 81-9. 61. Tu, X.; Wang, L.; Wei, J.; Wang, B.; Tang, Y.; Shi, J.; Zhang, Z.; Chen, Y., 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic Engineering 2016, 158, 30-34. 62. Beamish, J. A.; Zhu, J.; Kottke-Marchant, K.; Marchant, R. E., The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J Biomed Mater Res A 2010, 92 (2), 441-50. 63. Aggarwal, P.; Lawson, J. S.; Tolley, H. D.; Lee, M. L., High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules. J Chromatogr A 2014, 1364, 96-106. 64. Wong, K. V.; Hernandez, A., A Review of Additive Manufacturing. ISRN Mechanical Engineering 2012, 2012, 1-10. 65. Kurimoto, M.; Ozaki, H.; Yamashita, Y.; Funabashi, T.; Kato, T.; Suzuoki, Y., Dielectric properties and 3d printing of uv-cured acrylic composite with alumina microfiller. IEEE Transactions on Dielectrics and Electrical Insulation 2016, 23 (5), 2985-2992. 66. Al Mousawi, A.; Poriel, C.; Dumur, F.; Toufaily, J.; Hamieh, T.; Fouassier, J. P.; Lalevée, J., Zinc Tetraphenylporphyrin as High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing Applications. Macromolecules 2017, 50 (3), 746-753. 67. Yeh, Y. C.; Highley, C. B.; Ouyang, L.; Burdick, J. A., 3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication 2016, 8 (4), 045004. 168 68. Lumelsky, Y.; Silverstein, M. S., Biodegradable Porous Polymers through Emulsion Templating. Macromolecules 2009, 42 (5), 1627-1633. 69. Shapiro, E. M., Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med 2015, 73 (1), 376-89. 70. Yoshida, S.; Lamberti, L.; Sciammarella, C., <3D Printing Paper Final Manuscript.pdf>. 2017. 71. Schuller-Ravoo, S.; Feijen, J.; Grijpma, D. W., Flexible, elastic and tear-resistant networks prepared by photo-crosslinking poly(trimethylene carbonate) macromers. Acta Biomater 2012, 8 (10), 3576-85. 72. Xie, H.; Cheng, C.-Y.; Du, L.; Fan, C.-J.; Deng, X.-Y.; Yang, K.-K.; Wang, Y.-Z., A Facile Strategy To Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups. Macromolecules 2016, 49 (10), 3845- 3855. 73. Bae, M.; Divan, R.; Suthar, K. J.; Mancini, D. C.; Gemeinhart, R. A., Fabrication of Poly(ethylene glycol) Hydrogel Structures for Pharmaceutical Applications using Electron beam and Optical Lithography. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 2010, 28 (6), C6P24-C6P29. 74. Lu, L.; Guo, P.; Pan, Y., Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures. Journal of Manufacturing Science and Engineering 2017, 139 (7), 071008. 75. Seo, H.; Heo, S. G.; Lee, H.; Yoon, H., Preparation of PEG materials for constructing complex structures by stereolithographic 3D printing. RSC Adv. 2017, 7 (46), 28684-28688. 76. Yamada, A.; Niikura, F.; Ikuta, K., A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility. Journal of Micromechanics and Microengineering 2008, 18 (2), 025035. 169 77. Wust, S.; Muller, R.; Hofmann, S., 3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res A 2015, 103 (8), 2558-70. 78. Song, X.; Pan, Y.; Chen, Y., Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing. Journal of Manufacturing Science and Engineering 2014, 137 (2), 021005. 79. Sandron, S.; Heery, B.; Gupta, V.; Collins, D. A.; Nesterenko, E. P.; Nesterenko, P. N.; Talebi, M.; Beirne, S.; Thompson, F.; Wallace, G. G.; Brabazon, D.; Regan, F.; Paull, B., 3D printed metal columns for capillary liquid chromatography. Analyst 2014, 139 (24), 6343-7. 80. Mohammadi, S.; Maeki, M.; Mohamadi, R. M.; Ishida, A.; Tani, H.; Tokeshi, M., An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst 2015, 140 (19), 6493-9. 81. Hribar, K. C.; Soman, P.; Warner, J.; Chung, P.; Chen, S., Light-assisted directwrite of 3D functional biomaterials. Lab Chip 2014, 14 (2), 268-75. 82. Hribar, K. C.; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S. C., Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip 2015, 15 (11), 2412-8. 83. Ledesma, J.; Bortolato, S. A.; Boschetti, C. E.; Martino, D. M., Optimization of Environmentally Benign Polymers Based on Thymine and Polyvinyl Sulfonate Using Plackett-Burman Design and Surface Response. Journal of Chemistry 2013, 2013, 1- 9. 84. Kwisnek, L.; Goetz, J.; Meyers, K. P.; Heinz, S. R.; Wiggins, J. S.; Nazarenko, S., PEG Containing Thiol–Ene Network Membranes for CO2Separation: Effect of Cross-Linking on Thermal, Mechanical, and Gas Transport Properties. 170 Macromolecules 2014, 47 (10), 3243-3253. 85. Eshel-Green, T.; Eliyahu, S.; Avidan-Shlomovich, S.; Bianco-Peled, H., PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing. Int J Pharm 2016, 506 (1-2), 25-34. 86. Xie, M.; Ge, J.; Xue, Y.; Du, Y.; Lei, B.; Ma, P. X., Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation. J Mech Behav Biomed Mater 2015, 51, 163-8. 87. Link, L. A.; Lonnecker, A. T.; Hearon, K.; Maher, C. A.; Raymond, J. E.; Wooley, K. L., Photo-cross-linked poly(thioether-co-carbonate) networks derived from the natural product quinic acid. ACS Appl Mater Interfaces 2014, 6 (20), 17370- 5. 88. Mazzoccoli, J. P.; Feke, D. L.; Baskaran, H.; Pintauro, P. N., Mechanical and cell viability properties of crosslinked low- and high-molecular weight poly(ethylene glycol) diacrylate blends. J Biomed Mater Res A 2010, 93 (2), 558-66. 89. Morris, V. B.; Nimbalkar, S.; Younesi, M.; McClellan, P.; Akkus, O., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Ann Biomed Eng 2017, 45 (1), 286-296. 90. Al Mousawi, A.; Kermagoret, A.; Versace, D.-L.; Toufaily, J.; Hamieh, T.; Graff, B.; Dumur, F.; Gigmes, D.; Fouassier, J. P.; Lalevée, J., Copper photoredox catalysts for polymerization upon near UV or visible light: structure/reactivity/efficiency relationships and use in LED projector 3D printing resins. Polym. Chem. 2017, 8 (3), 568-580. 91. Johnson, D. W.; Langford, C. R.; Didsbury, M. P.; Lipp, B.; Przyborski, S. A.; Cameron, N. R., Fully biodegradable and biocompatible emulsion templated polymer scaffolds by thiol-acrylate polymerization of polycaprolactone macromonomers. 171 Polym. Chem. 2015, 6 (41), 7256-7263. 92. Fairbanks, B. D.; Schwartz, M. P.; Bowman, C. N.; Anseth, K. S., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 2009, 30 (35), 6702-7. 93. Stach, M.; Lacík, I.; Chorvát, D. a.; Buback, M.; Hesse, P.; Hutchinson, R. A.; Tang, L., Propagation Rate Coefficient for Radical Polymerization ofN-Vinyl Pyrrolidone in Aqueous Solution Obtained by PLP−SEC. Macromolecules 2008, 41 (14), 5174-5185. 94. Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X., 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv Mater 2015, 27 (27), 4035-40. 95. Wu, B.; Chassé, W.; Peters, R.; Brooijmans, T.; Dias, A. A.; Heise, A.; Duxbury, C. J.; Kentgens, A. P. M.; Brougham, D. F.; Litvinov, V. M., Network Structure in Acrylate Systems: Effect of Junction Topology on Cross-Link Density and Macroscopic Gel Properties. Macromolecules 2016, 49 (17), 6531-6540. 96. Avadanei, M. I., Photocrosslinking of 1,2-Polybutadiene and Characteristics of the Crosslinked System. Journal of Macromolecular Science, Part B 2012, 51 (2), 313-327. 97. Javani, M.; Khorasani, S. N.; Abdolmaleki, A.; Nouri Khorasani, A., Photocrosslinking of styrene–isoprene–styrene; effect of benzoin and ethylene glycol dimethacrylate on physical properties. Journal of Adhesion Science and Technology 2014, 28 (10), 975-985. 98. Cai, L.; Wang, S., Poly(ɛ-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responses. Polymer 2010, 51 (1), 164-177. 172 99. Jaiswal, M.; Dinda, A. K.; Gupta, A.; Koul, V., Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery. Biomed Mater 2010, 5 (6), 065014. 100. Amsden, B. G.; Marecak, D., Long-Term Sustained Release from a Biodegradable Photo-Cross-Linked Network for Intraocular Corticosteroid Delivery. Mol Pharm 2016, 13 (9), 3004-12. 101. Vijayabaskar, V.; Bhattacharya, S.; Tikku, V. K.; Bhowmick, A. K., Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers. Radiation Physics and Chemistry 2004, 71 (5), 1045-1058. 102. Yang, C.-M.; Ju, J. B.; Lee, J. K.; Cho, W. I.; Cho, B. W., Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly[(ethylene glycol)diacrylate]–poly(vinylidene fluoride) blend. Electrochimica Acta 2005, 50 (9), 1813-1819. 103. Wang, K.; Jia, Y.-G.; Zhu, X. X., Biocompound-Based Multiple Shape Memory Polymers Reinforced by Photo-Cross-Linking. ACS Biomaterials Science & Engineering 2015, 1 (9), 855-863. 104. Markiewicz, K. H.; Seiler, L.; Misztalewska, I.; Winkler, K.; Harrisson, S.; Wilczewska, A. Z.; Destarac, M.; Marty, J. D., Advantages of poly(vinyl phosphonic acid)-based double hydrophilic block copolymers for the stabilization of iron oxide nanoparticles. Polym. Chem. 2016, 7 (41), 6391 -6399. 105. Hribar, K. C.; Choi, Y. S.; Ondeck, M.; Engler, A. J.; Chen, S., Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness. Adv Funct Mater 2014, 24 (31), 4922-4926. 106. Liu, J.; Hwang, H. H.; Wang, P.; Whang, G.; Chen, S., Direct 3D-printing of cellladen constructs in microfluidic architectures. Lab Chip 2016, 16 (8), 1430-8. 107. Jiang, F.; Pu, W.; Li, Y.; Du, D., A double-tailed acrylamide hydrophobically 173 associating polymer: Synthesis, characterization, and solution properties. Journal of Applied Polymer Science 2015, 132 (38), n/a-n/a. 108. Wu, J.; Soucek, M. D., The effect of multifunctional monomers/oligomers Additives on electron beam radiation crosslinking of poly (styrene-blockisoprene/butadiene-block-styrene) (SIBS). Radiation Physics and Chemistry 2016, 119, 55-63. 109. Temenoff, J. S.; Athanasiou, K. A.; LeBaron, R. G.; Mikos, A. G., Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 2002, 59 (3), 429-37. 110. Butscher, A.; Bohner, M.; Hofmann, S.; Gauckler, L.; Muller, R., Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 2011, 7 (3), 907-20. 111. Cha, C.; Soman, P.; Zhu, W.; Nikkhah, M.; Camci-Unal, G.; Chen, S.; Khademhosseini, A., Structural Reinforcement of Cell-Laden Hydrogels with Microfabricated Three Dimensional Scaffolds. Biomater Sci 2014, 2 (5), 703-709. 112. Cao, Y.; Lee, B. H.; Peled, H. B.; Venkatraman, S. S., Synthesis of stiffnesstunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for threedimensional cell encapsulation. J Biomed Mater Res A 2016, 104 (10), 2401 -11. 113. Kolesky, D. B.; Homan, K. A.; Skylar-Scott, M. A.; Lewis, J. A., Threedimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 2016, 113 (12), 3179-84. 114. Hribar, K. C.; Meggs, K.; Liu, J.; Zhu, W.; Qu, X.; Chen, S., Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci Rep 2015, 5, 17203. 115. Ovsianikov, A.; Malinauskas, M.; Schlie, S.; Chichkov, B.; Gittard, S.; Narayan, 174 R.; Lobler, M.; Sternberg, K.; Schmitz, K. P.; Haverich, A., Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 2011, 7 (3), 967-74. 116. Fozdar, D. Y.; Soman, P.; Lee, J. W.; Han, L. H.; Chen, S., Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio. Adv Funct Mater 2011, 21 (14), 2712-2720. 117. Soman, P.; Fozdar, D. Y.; Lee, J. W.; Phadke, A.; Varghese, S.; Chen, S., A Threedimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio. Soft Matter 2012, 8 (18), 4946-4951. 118. Yu, R.; Yang, X.; Zhang, Y.; Zhao, X.; Wu, X.; Zhao, T.; Zhao, Y.; Huang, W., Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS Appl Mater Interfaces 2017, 9 (2), 1820-1829. 119. Kotz, F.; Arnold, K.; Bauer, W.; Schild, D.; Keller, N.; Sachsenheimer, K.; Nargang, T. M.; Richter, C.; Helmer, D.; Rapp, B. E., Three-dimensional printing of transparent fused silica glass. Nature 2017, 544 (7650), 337-339. 120. Soman, P.; Tobe, B. T.; Lee, J. W.; Winquist, A. A.; Singec, I.; Vecchio, K. S.; Snyder, E. Y.; Chen, S., Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomed Microdevices 2012, 14 (5), 829- 38. 121. Gauvin, R.; Chen, Y. C.; Lee, J. W.; Soman, P.; Zorlutuna, P.; Nichol, J. W.; Bae, H.; Chen, S.; Khademhosseini, A., Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012, 33 (15), 3824-34. 122. Guvendiren, M.; Molde, J.; Soares, R. M.; Kohn, J., Designing Biomaterials for 3D Printing. ACS Biomater Sci Eng 2016, 2 (10), 1679-1693. 175 123. Soman, P.; Lee, J. W.; Phadke, A.; Varghese, S.; Chen, S., Spatial tuning of negative and positive Poisson's ratio in a multi-layer scaffold. Acta Biomater 2012, 8 (7), 2587-94. 124. G. Perrone, M.; Scilimati, A.; Simone, L.; Vitale, P., Selective COX-1 Inhibition: A Therapeutic Target to be Reconsidered. Current Medicinal Chemistry 2010, 17 (32), 3769-3805. 125. Injamul Hoque; Arkendu Chatterjee; Somenath Bhattacharya; Raj Biswas; Sonia Auddy; Mondal, K., A Review on different types of the Non Steroidal AntiInflammatory Drugs (NSAIDs). International Journal of Advanced Multidisciplinary Research 2016, 3 (9), 41-51. 126. Peskar, B. M., Role of cyclooxygenase isoforms in gastric mucosal defence. Journal of Physiology-Paris 2001, 95 (1-6), 3-9. 127. Meek, I. L.; Van de Laar, M. A.; H, E. V., Non-Steroidal Anti-Inflammatory Drugs: An Overview of Cardiovascular Risks. Pharmaceuticals (Basel) 2010, 3 (7), 2146-2162. 128. Loogna, P.; Franzen, L.; Sipponen, P.; Domellof, L., Cyclooxygenase-2 and Bcl- 2 expression in the stomach mucosa of Wistar rats exposed to Helicobacter pylori, N'- methyl- N'-nitro- N-nitrosoguanidine and bile. Virchows Arch 2002, 441 (1), 77-84. 129. Li, J.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B., D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J Am Chem Soc 2013, 135 (2), 542-5. 130. Zhang, S.; Ye, J.; Dong, G., Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci 2010, 40 (3), 311-20. 131. Yeh, C. H.; Ma, K. H.; Liu, P. S.; Kuo, J. K.; Chueh, S. H., Baicalein Decreases Hydrogen Peroxide-Induced Damage to NG108-15 Cells via Upregulation of Nrf2. J 176 Cell Physiol 2015, 230 (8), 1840-51. 132. Qi, Z.; Yin, F.; Lu, L.; Shen, L.; Qi, S.; Lan, L.; Luo, L.; Yin, Z., Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm Res 2013, 62 (9), 845-55. 133. Talepoor, A. G.; Kalani, M.; Dahaghani, A. S.; Doroudchi, M., Hydrogen Peroxide and Lipopolysaccharide Differentially Affect the Expression of MicroRNAs 10a, 33a, 21, 221 in Endothelial Cells Before and After Coculture With Monocytes. Int J Toxicol 2017, 36 (2), 133-141. 134. Suk, K.; Lee, H.; Kang, S. S.; Cho, G. J.; Choi, W. S., Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther 2003, 305 (2), 638-45. 135. Cordero, J. A.; Camacho, M.; Obach, R.; Domenech, J.; Vila, L., In vitro based index of topical anti-inflammatory activity to compare a series of NSAIDs. European Journal of Pharmaceutics and Biopharmaceutics 2001, 51 (2), 135-142. 136. Font-Nieves, M.; Sans-Fons, M. G.; Gorina, R.; Bonfill-Teixidor, E.; SalasPerdomo, A.; Marquez-Kisinousky, L.; Santalucia, T.; Planas, A. M., Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J Biol Chem 2012, 287 (9), 6454-68. 137. Yue, G.; Shi, G.; Azaro, M. A.; Yang, Q.; Hu, G.; Luo, M.; Yin, K.; Nagele, R. G.; Fine, D. H.; Yang, J. M.; Li, H., Lipopolysaccharide (LPS) potentiates hydrogen peroxide toxicity in T98G astrocytoma cells by suppression of anti-oxidative and growth factor gene expression. BMC Genomics 2008, 9, 608. 138. Bergsbaken, T.; Fink, S. L.; Cookson, B. T., Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009, 7 (2), 99-109. 139. Martorana, F.; Guidotti, G.; Brambilla, L.; Rossi, D., Withaferin A Inhibits 177 Nuclear Factor-kappaB-Dependent Pro-Inflammatory and Stress Response Pathways in the Astrocytes. Neural Plast 2015, 2015, 381964. 140. Niranjan, R., The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol 2014, 49 (1), 28-38. 141. Zhang, Y.; Desai, A.; Yang, S. Y.; Bae, K. B.; Antczak, M. I.; Fink, S. P.; Tiwari, S.; Willis, J. E.; Williams, N. S.; Dawson, D. M.; Wald, D.; Chen, W. D.; Wang, Z.; Kasturi, L.; Larusch, G. A.; He, L.; Cominelli, F.; Di Martino, L.; Djuric, Z.; Milne, G. L.; Chance, M.; Sanabria, J.; Dealwis, C.; Mikkola, D.; Naidoo, J.; Wei, S.; Tai, H. H.; Gerson, S. L.; Ready, J. M.; Posner, B.; Willson, J. K.; Markowitz, S. D., TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015, 348 (6240), aaa2340. 142. Cuzzocrea, S.; Salvemini, D., Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 2007, 71 (4), 290-7. 143. Chan, T. A., Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. The Lancet Oncology 2002, 3 (3), 166-174.
|