[1] Kumar, Ashok, et al. "Evaluation of buffer layers for hot filament chemical vapor deposition diamond films on silicon substrates." Thin Solid Films 308 (1997): 209-214.
[2] 陳怡錞「異質基板塗覆金剛烷及鑽石沉積之研究」,國立交通大學材料科學與工程學系,博士論文,104年。[3] Cheng, Y., and D. P. Thompson. "The transformability of tetragonal ZrO 2 in some glass systems." Journal of materials science letters 9.1 (1990): 24-27.
[4] Then, I. K., M. Mujahid, and B. Zhang. "Development of wear resistant zirconium oxide thin films on stainless steel substrates." Materials Science Forum. Vol. 475. Trans Tech Publications, 2005.
[5] Robertson, John. "Band offsets of wide-band-gap oxides and implications for future electronic devices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 18.3 (2000): 1785-1791.
[6] Kattner, U. R., and Th B. Massalski. "Binary alloy phase diagrams." ASM International, Materials Park, OH 147 (1990): 2940-2941.
[7] Hannink, Richard HJ, Patrick M. Kelly, and Barry C. Muddle. "Transformation toughening in zirconia‐containing ceramics." Journal of the American Ceramic Society 83.3 (2000): 461-487.
[8] Panda, Debashis, and Tseung-Yuen Tseng. "Growth, dielectric properties, and memory device applications of ZrO 2 thin films." Thin Solid Films 531 (2013): 1-20.
[9] Jung, T., and A. Westphal. "Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment." Materials Science and Engineering: A 140 (1991): 528-533.
[10] Ji, Z., et al. "Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings." Surface and Coatings Technology 135.2 (2001): 109-117.
[11] Gottardi, G., et al. "Effects of oxygen concentration in the Ar/O 2 plasma on the bulk structure and surface properties of RF reactively sputtered zirconia thin films." Surface and Coatings Technology 202.11 (2008): 2332-2337.
[12] Severin, D., et al. "Tailoring of structure formation and phase composition in reactively sputtered zirconium oxide films using nitrogen as an additional reactive gas." Journal of Applied Physics 103.8 (2008): 083306.
[13] Zhou, Y., et al. "Thickness dependence of the structural and dielectric properties of epitaxial ZrO2 films grown by limited reaction sputtering." Journal of Physics D: Applied Physics 42.20 (2009): 205406.
[14] Zhu, J., et al. "Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition." Journal of Physics D: Applied Physics 36.4 (2003): 389.
[15] Cancea, V. N., et al. "Analysis of Zirconia Thin Films Grown by Pulsed Laser Deposition." Physics AUC 22 (2012): 50-62.
[16] Mei, A. B., et al. "Physical properties of epitaxial ZrN/MgO (001) layers grown by reactive magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31.6 (2013): 061516.
[17] Brown, R., M. N. Alias, and R. Fontana. "Effect of composition and thickness on corrosion behavior of TiN and ZrN thin films." Surface and coatings technology 62.1-3 (1993): 467-473.
[18] Wiiala, U. K., et al. "Improved corrosion resistance of physical vapour deposition coated TiN and ZrN." Surface and Coatings Technology 41.2 (1990): 191-204.
[19] Roberts, Benjamin Washington. "Survey of superconductive materials and critical evaluation of selected properties." Journal of Physical and Chemical Reference Data 5.3 (1976): 581-822.
[20] 董曉明「基板偏壓及熱處理對氮化鋯奈米薄膜結構與性質之影響」,國立清華大學材料科學與工程學系,碩士論文,93年。[21] 楊恆傑「直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層」,國立成功大學材料科學與工程學系,碩士論文,91年。[22] Yanagisawa, Hideto, et al. "Epitaxial growth of (001) ZrN thin films on (001) Si by low temperature process." Japanese journal of applied physics 44.1R (2005): 343.
[23] 楊尚賢「矽單晶基板上之異質磊晶成長:氮化鈦、氮化鋯、氧化鋅」,國立清華大學材料科學與工程學系,碩士論文,95年。[24] Rödel, T‐C., et al. "Nitrogen‐doped zirconia single crystals." Crystal Research and Technology 41.10 (2006): 950-954.
[25] Delachaux, T., et al. "Nitriding of tetragonal zirconia in a high current dc plasma source." Thin Solid Films 425.1 (2003): 113-116.
[26] Milani, R., et al. "Nitriding of yttria-stabilized zirconia in atmospheric pressure microwave plasma." Journal of Materials Research 24.6 (2009): 2021-2028.
[27] Callister, William D., and David G. Rethwisch. Materials science and engineering. Vol. 5. NY: John Wiley & Sons, 2011.
[28] Bachmann, Peter K. "Emerging technology of diamond thin films." Chemical and Engineering News 67.20 (1989): 24-39.
[29] Jagannadham, K. "Model of interfacial thermal resistance of diamond composites." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17.2 (1999): 373-379.
[30] Hall, H. Tracy. "Ultra‐High‐Pressure, High‐Temperature Apparatus: the``Belt''." Review of Scientific Instruments 31.2 (1960): 125-131.
[31] Tsuda, Minoru, Mitsuo Nakajima, and Setsuko Oikawa. "Epitaxial growth mechanism of diamond crystal in methane-hydrogen plasma." Journal of the American Chemical Society 108.19 (1986): 5780-5783.
[32] Tsuda, Minoru, Mitsuo Nakajima, and Setsuko Oikawa. "The importance of the positively charged surface for the epitaxial growth of diamonds at low pressure." Japanese journal of applied physics 26.5 (1987): L527-L529.
[33] Liu, Huimin, and David S. Dandy. Diamond chemical vapor deposition: nucleation and early growth stages. Elsevier, 1996.
[34] Hess, Dennis W. "Plasma-assisted oxidation, anodization, and nitridation of silicon." IBM journal of research and development 43.1.2 (1999): 127-145.
[35] Sharma, Shashank, et al. "Selective plasma nitridation and contrast reversed etching of silicon." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 19.5 (2001): 1743-1746.
[36] Bardos, L., J. Musil, and P. Taras. "Differences between microwave and RF activation of nitrogen for the PECVD process." Journal of Physics D: Applied Physics 15.7 (1982): L79.
[37] 馬志成「氮化m面藍寶石基板與鑽石沉積於m面AlN氮化層之研究」,國立交通大學材料科學與工程學系,碩士論文,105年。[38] Kułakowska-Pawlak, B., and W. Zyrnicki. "Spectroscopic investigations into plasma used for nitriding processes of steel and titanium." Thin Solid Films 230.2 (1993): 115-120.
[39] Van Helden, J. H., et al. "Detailed study of the plasma-activated catalytic generation of ammonia in N 2-H 2 plasmas." Journal of applied physics 101.4 (2007): 043305.
[40] Caruso, R., et al. "Ion nitriding of zirconia coated on stainless steel: structure and mechanical properties." Thin Solid Films 468.1 (2004): 142-148.
[41] Akiyama, Toru, et al. "Nitridation of Al 2 O 3 surfaces: Chemical and structural change triggered by oxygen desorption." Physical review letters 110.2 (2013): 026101.
[42] Yarbrough, Walter A., and Russell Messier. "Current issues and problems in the chemical vapor deposition of diamond." Science 247.4943 (1990): 688-696.][
[43] Yarbrough, W. A. "Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9.3 (1991): 1145-1152.
[44] Jia, C. L., K. Urban, and X. Jiang. "Heteroepitaxial diamond films on silicon (001): Interface structure and crystallographic relations between film and substrate." Physical Review B 52.7 (1995): 5164.
[45] Matsumoto, Seiichiro, and Yoshio Matsui. "Electron microscopic observation of diamond particles grown from the vapour phase." Journal of Materials Science 18.6 (1983): 1785-1793.
[46] Marchand, Alan P. "Diamondoid Hydrocarbons--Delving into Nature's Bounty." Science 299.5603 (2003): 52-53.
[47] Tiwari, Rajanish N., Jitendra N. Tiwari, and Li Chang. "The synthesis of diamond films on adamantane-coated Si substrate at low temperature." Chemical Engineering Journal 158.3 (2010): 641-645.
[48] Yang, Fan, et al. "Deviatoric stress-induced phase transitions in diamantane." The Journal of chemical physics 141.15 (2014): 154305.
[49] Reiser, J., et al. "Adamantane and diamantane; phase diagrams, solubilities, and rates of dissolution." Fluid Phase Equilibria 117.1-2 (1996): 160-167.
[50] https://www.alibaba.com/product-detail/Diamantane_116273148.html
[51] Chang, Li, and Jhih-Kun Yan. "Bias-enhanced nucleation of oriented diamonds on cone-like Si." Diamond and Related Materials 17.4 (2008): 467-471.
[52] Chen, Wei-Chun, et al. "Growth and characterization of diamond films on TiN/Si (100) by microwave plasma chemical vapor deposition." Diamond and Related Materials 18.2 (2009): 124-127.
[53] Contreras, O., G. A. Hirata, and M. Avalos-Borja. "Interface analysis of CVD diamond on TiN surfaces." Applied surface science 158.3 (2000): 236-245.
[54] Fischer, M., et al. "Preparation of 4-inch Ir/YSZ/Si (001) substrates for the large-area deposition of single-crystal diamond." Diamond and Related Materials 17.7 (2008): 1035-1038.
[55] 莊雅琪「(100)Si基板上之TiO2薄膜氮化為TiN磊晶並作為緩衝曾在其上成長鑽石薄膜之研究」,國立交通大學材料科學與工程學系,碩士論文,104年。[56] Poulon-Quintin, Angéline, et al. "Bilayer systems of tantalum or zirconium nitrides and molybdenum for optimized diamond deposition." Thin Solid Films 519.5 (2010): 1600-1605.
[57] Huang, Bohr-Ran, et al. "Bias effects on large area polycrystalline diamond films synthesized by the bias enhanced growth technique." Diamond and related materials 12.1 (2003): 26-32.
[58] Mermoux, Michel, et al. "Internal stresses in {111} homoepitaxial CVD diamond." Diamond and related materials 13.2 (2004): 329-334.
[59] Mermoux, Michel, et al. "Characterization of< 111> diamond thin films by micro-Raman spectroscopy." Diamond and related materials 13.4 (2004): 886-890.
[60] Mermoux, Michel, et al. "Raman characterization of boron-doped {111} homoepitaxial diamond layers." Diamond and related materials 15.4 (2006): 572-576.
[61] Carrasco, Esther, et al. "Neutral and ion chemistry in low pressure dc plasmas of H 2/N 2 mixtures: routes for the efficient production of NH3 and NH 4+." Physical Chemistry Chemical Physics 13.43 (2011): 19561-19572.
[62] Chevalier, Jerome, et al. "The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends." Journal of the American Ceramic Society 92.9 (2009): 1901-1920.
[63] Perkins, Charles M., et al. "Thermal stability of polycrystalline silicon electrodes on ZrO 2 gate dielectrics." Applied physics letters 81.8 (2002): 1417-1419.
[64] Pukari, Merja, and Masahide Takano. "Sintering and characterization of ZrN and (Dy, Zr) N as surrogate materials for fast reactor nitride fuel." Journal of Nuclear Materials 444.1 (2014): 7-13.
[65] Prieto, P., L. Galán, and J. M. Sanz. "Interaction of oxygen with ZrN at room temperature: An XPS study." Surface and interface analysis 21.6‐7 (1994): 395-399.
[66] Ahn, H., et al. "Characterization of interfacial layer of ultrathin Zr silicate on Si (100) using spectroscopic ellipsometry and HRTEM." Thin Solid Films 455 (2004): 318-322.
[67] Wilk, G. D., and R. M. Wallace. "Stable zirconium silicate gate dielectrics deposited directly on silicon." Applied Physics Letters 76.1 (2000): 112-114.
[68] Coates, John. "Interpretation of infrared spectra, a practical approach." Encyclopedia of analytical chemistry (2000).
[69] Atdaev, B. S., et al. "Epitaxial layers of CdTe on GaP (111) B and (100)." Inorg. Mater.(Engl. Transl.);(United States) 23.12 (1988).
[70] Howard, C. J., and R. J. Hill. "The polymorphs of zirconia: phase abundance and crystal structure by Rietveld analysis of neutron and X-ray diffraction data." Journal of materials science 26.1 (1991): 127-134.
[71] Aoyama, Tatsuji, et al. "Formation of PbZrO3 by transformation of cubic ZrO2 solid solution." Journal of the American Ceramic Society 78.11 (1995): 3163-3164.
[72] Milošev, I., et al. "Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS." Surface and interface analysis 24.7 (1996): 448-458.
[73] Wiame, Hugues, et al. "Thermal oxidation under oxygen of zirconium nitride studied by XPS, DRIFTS, TG-MS." Journal of the European Ceramic Society 18.9 (1998): 1293-1299.
[74] Milošev, Ingrid, et al. "Zirconium Nitride by XPS." Surface Science Spectra 5.2 (1998): 152-158.
[75] Rtimi, Sami, et al. "ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect." Applied Catalysis B: Environmental 138 (2013): 113-121.
[76] Guittet, M. J., J. P. Crocombette, and M. Gautier-Soyer. "Bonding and XPS chemical shifts in ZrSiO 4 versus SiO 2 and ZrO 2: Charge transfer and electrostatic effects." Physical Review B 63.12 (2001): 125117.
[77] May, P. W., et al. "Interactive Raman spectra of adamantane, diamantane and diamond, and their relevance to diamond film deposition." PhysChemComm 1.4 (1998): 35-44.