(3.220.231.235) 您好!臺灣時間:2021/03/08 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威儒
研究生(外文):Chen, Wei-Lu
論文名稱:矽晶片上氮化ZrO2製備ZrN磊晶薄膜與雙金剛烷輔助鑽石成核於ZrN之研究
論文名稱(外文):The study of epitaxial ZrN film on Si substrate by microwave plasma nitridation of ZrO2 and diamantane-assisted diamond nucleation on ZrN
指導教授:張立張立引用關係
指導教授(外文):Chang, Li
口試委員:陳軍華周苡嘉林澤勝張立
口試日期:2017-08-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:磊晶氧化鋯氮化鋯微波電漿氮化雙金剛烷鑽石
外文關鍵詞:epitaxialZrO2ZrNMPCVDnitridationdiamantanediamond
相關次數:
  • 被引用被引用:2
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ZrN具有立方晶體結構,為導電氮化物,具有高熔點、高硬度等優越之性質,可適合做為鑽石成長於矽晶片之緩衝層。本研究第一部分使用脈衝雷射沉積系統於Si(100)基板上成長出具磊晶關係之ZrO2薄膜,並以此薄膜進行氮化製程,利用氮氫氣體之微波電漿成功將ZrO2薄膜氮化成與基板具磊晶關係之ZrN薄膜。第二部分則利用雙金剛烷(diamantane)與二乙二醇之混合溶液塗佈於Si基板上進行輔助鑽石成核之實驗,觀察其成核過程,紀錄塗佈後試片表面於微波電漿系統中以甲烷和氫氣混合氣體沉積時間之變化所造成之成核情況,以Raman光譜與掃描式電子顯微鏡(SEM) 影像紀錄,並利用不同方法使雙金剛烷能大幅提升鑽石成核之密度,如增加塗佈次數、基板表面改質及ZrN緩衝層之利用等。
從穿透式電子顯微鏡(TEM)與X光繞射(XRD)研究結果顯示,以磊晶之ZrO2薄膜進行氮化較易形成磊晶之ZrN薄膜,而微波氮化製程之壓力以低壓20 torr之條件較佳,於50 torr時電漿密度過高,會導致蝕刻速率大於氮化速率,使薄膜呈現非連續狀。由XRD與TEM觀察在未完全氮化之試片,發現影像分為三層,分別為ZrN/ZrO2/Si,互相之間具有磊晶關係: (100)ZrN // (020)ZrO2 // (001)Si與[011] ZrN // [101] ZrO2 //[011]Si;從而可知氮化之過程為從ZrO2表面往界面進行,而氮化速率~ 3-4 nm/min。
雙金剛烷輔助鑽石成核之部分,由Raman光譜分析與SEM影像觀察可得知雙金剛烷鍵結之消減與鑽石生成之變化;於電漿沉積10分鐘後,在矽晶片上並無偵測到鑽石之訊號,或觀察到具鑽石特徵之顆粒;而於30分鐘後則有鑽石之Raman訊號,代表鑽石已產生,SEM影像顯示鑽石之尺寸為250 nm。利用不同之方法鍍附雙金剛烷,可有效增加密度達最高密度值 2.9 x 107 cm-2,適用於Si基板與具ZrN緩衝層之試片。
ZrN has cubic crystal structure and is a conducting nitride with many excellent properties such as high melting point and high hardness, such that it can be a appropriate buffer layer for diamond growth on Si wafer. This thesis focuses on the study of growth of epitaxial ZrN film on Si and diamantine-assisted diamond nucleation on ZrN. In the first part of this study, an epitaxial ZrO2 film on Si (100) substrate was grown by pulsed laser deposition, followed by nitriding the ZrO2 film to form epitaxial ZrN by microwave plasma with gas mixture of nitrogen and hydrogen. In the second part, coating on Si and ZrN/Si with a mixed solution of diamantane and diethylene glycol was performed to assist diamond nucleation in microwave plasma chemical vapor deposition (CVD) with gas mixture of CH4 and H2. The evolution of nucleation and growth for diamond formation was observed with micro-Raman spectroscopy and scanning electron microscopy (SEM). Various methods were also explored to enhance the diamond nucleation density, such as increasing diamatane coating times, surface treatments of the Si substrate, and using ZrN buffer layer on Si.
In the nitriding process for ZrN film formation, it is observed from transmission electron microscopy (TEM) and x-ray diffraction (XRD) that epitaxial ZrO2 can be much easier to form epitaxial ZrN than polycrystalline ZrO2. The favorable nitriding conditions determined by varying the processing parameters of power, pressure, and time were found to be under low pressure (below 20 torr). In contrast, at high pressure (> 50 torr), ZrN might be discontinuous with many holes appeared on the surface probably due to etching under a high plasma density. TEM observations on ZrO2 with incomplete nitridation show that epitaxial ZrN is on top of ZrO2, indicating that the nitriding process starts from the ZrO2 surface and gradually moves toward the interface between ZrO2 and Si. Furthermore, XRD and TEM results show that the epitaxial relationship between ZrN, ZrO2 and Si is (100)ZrN // (020)ZrO2 // (001)Si and [011]ZrN // [101]ZrO2 //[011]Si.
For diamond deposition by microwave plasma CVD, diamantane coating was applied onto Si and ZrN/Si substrates for seeding without any other surface pretreatment. The bonding change of diamantane under short period of plasma was observed from Raman spectroscopy and SEM. After first 10 min of microwave plasma CVD, the Raman and SEM showed no diamond evidence. After 30 min, the diamond crystallites appeared, and the size was 250 nm. It is found that diamantane coating can effectively enhance the diamond nucleation density to 2.9 × 107 cm-2.
摘要 I
Abstract III
第一章 緒論 1
第二章 文獻回顧 2
2.1二氧化鋯的基本性質、應用及相關成長研究 2
2.1.1二氧化鋯的基本性質 2
2.1.2 二氧化鋯的成長方法 4
2.2氮化鋯 7
2.2.1氮化鋯之基本性質 7
2.2.2氮化鋯成長方法 8
2.3鑽石 12
2.3.1鑽石之基本性質 12
2.3.2鑽石之應用 14
2.3.3人工合成鑽石成長方法 16
2.4氮化法 19
2.4.1微波電漿氮化法 19
2.4.2氮氫電漿 21
2.5輔助鑽石成核方法 22
2.5.1刮痕法(scratching) 23
2.5.2偏壓法(Bias-Enhanced Nucleation) 23
2.5.3金剛烷(adamantane) 24
2.5.4 雙金剛烷(Diamantane) 25
2.6鑽石成長於緩衝層的相關研究 27
第三章 實驗設備與流程 29
3.1薄膜成長設備與技術 29
3.1.1 脈衝雷射沉積系統 (Pulsed Laser Deposition) 29
3.1.2微波電漿化學氣相沉積系統(Microwave Plasma Chemical Vapor Deposition) 30
3.1.3.鉬基座 32
3.2實驗流程 33
3.2.1二氧化鋯沉積的製程步驟 33
3.2.2二氧化鋯氮化製程步驟 34
3.2.3鑽石成長製程步驟 35
3.3分析技術與設備 37
3.3.1 X光繞射儀 (X-ray diffractometer,XRD) 37
3.3.2掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 37
3.3.3拉曼光譜 (Raman Spectroscopy) 38
3.3.4聚焦離子束 (Focused Ion Beam,FIB) 38
3.3.5穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 39
3.3.6 X光光電子能譜儀 (X-ray photoelectron spectroscopy,XPS) 39
第四章 二氧化鋯氮化及磊晶氮化鋯之形成 40
4.1 PLD沉積二氧化鋯 40
4.1.1 XRD結構分析 40
4.1.2 TEM分析 46
4.2微波電漿氮化法製備磊晶氮化鋯 49
4.2.1二氧化鋯之方向性 49
4.2.2 氮化時間 61
4.3氮化鋯之TEM分析 65
4.4氮化鋯XPS縱深分析 75
4.5小結 83
第五章 鑽石成核 84
5.1偏壓於ZrN緩衝層輔助成核 84
5.2雙金剛烷輔助鑽石成核 87
5.2.1雙金剛烷於矽基板上輔助成核-過程 89
5.2.2雙金剛烷於矽基板上成核密度改善 99
5.2.3雙金剛烷於ZrN緩衝層上輔助鑽石成核 106
5.3小結 109
第六章 結論 111
6.1 氮化鋯薄膜製程 111
6.2 雙金剛烷輔助鑽石成核 112
6.3 未來建議與展望 112
參考文獻 114
附錄一 XRD 2θpeak位置和d-spacing 121
附錄二 TEM模擬繞射圖 122
附錄三 ZrO2試片之XRD 2θ掃描 124
附錄四 XPS Binding Energy (eV) 125
附錄五 雙金剛烷之Raman訊號[77] 126
附錄六 雙金剛烷之XRD 2θ掃描 [48] 127
[1] Kumar, Ashok, et al. "Evaluation of buffer layers for hot filament chemical vapor deposition diamond films on silicon substrates." Thin Solid Films 308 (1997): 209-214.
[2] 陳怡錞「異質基板塗覆金剛烷及鑽石沉積之研究」,國立交通大學材料科學與工程學系,博士論文,104年。
[3] Cheng, Y., and D. P. Thompson. "The transformability of tetragonal ZrO 2 in some glass systems." Journal of materials science letters 9.1 (1990): 24-27.
[4] Then, I. K., M. Mujahid, and B. Zhang. "Development of wear resistant zirconium oxide thin films on stainless steel substrates." Materials Science Forum. Vol. 475. Trans Tech Publications, 2005.
[5] Robertson, John. "Band offsets of wide-band-gap oxides and implications for future electronic devices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 18.3 (2000): 1785-1791.
[6] Kattner, U. R., and Th B. Massalski. "Binary alloy phase diagrams." ASM International, Materials Park, OH 147 (1990): 2940-2941.
[7] Hannink, Richard HJ, Patrick M. Kelly, and Barry C. Muddle. "Transformation toughening in zirconia‐containing ceramics." Journal of the American Ceramic Society 83.3 (2000): 461-487.
[8] Panda, Debashis, and Tseung-Yuen Tseng. "Growth, dielectric properties, and memory device applications of ZrO 2 thin films." Thin Solid Films 531 (2013): 1-20.
[9] Jung, T., and A. Westphal. "Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment." Materials Science and Engineering: A 140 (1991): 528-533.
[10] Ji, Z., et al. "Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings." Surface and Coatings Technology 135.2 (2001): 109-117.
[11] Gottardi, G., et al. "Effects of oxygen concentration in the Ar/O 2 plasma on the bulk structure and surface properties of RF reactively sputtered zirconia thin films." Surface and Coatings Technology 202.11 (2008): 2332-2337.
[12] Severin, D., et al. "Tailoring of structure formation and phase composition in reactively sputtered zirconium oxide films using nitrogen as an additional reactive gas." Journal of Applied Physics 103.8 (2008): 083306.
[13] Zhou, Y., et al. "Thickness dependence of the structural and dielectric properties of epitaxial ZrO2 films grown by limited reaction sputtering." Journal of Physics D: Applied Physics 42.20 (2009): 205406.
[14] Zhu, J., et al. "Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition." Journal of Physics D: Applied Physics 36.4 (2003): 389.
[15] Cancea, V. N., et al. "Analysis of Zirconia Thin Films Grown by Pulsed Laser Deposition." Physics AUC 22 (2012): 50-62.
[16] Mei, A. B., et al. "Physical properties of epitaxial ZrN/MgO (001) layers grown by reactive magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31.6 (2013): 061516.
[17] Brown, R., M. N. Alias, and R. Fontana. "Effect of composition and thickness on corrosion behavior of TiN and ZrN thin films." Surface and coatings technology 62.1-3 (1993): 467-473.
[18] Wiiala, U. K., et al. "Improved corrosion resistance of physical vapour deposition coated TiN and ZrN." Surface and Coatings Technology 41.2 (1990): 191-204.
[19] Roberts, Benjamin Washington. "Survey of superconductive materials and critical evaluation of selected properties." Journal of Physical and Chemical Reference Data 5.3 (1976): 581-822.
[20] 董曉明「基板偏壓及熱處理對氮化鋯奈米薄膜結構與性質之影響」,國立清華大學材料科學與工程學系,碩士論文,93年。
[21] 楊恆傑「直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層」,國立成功大學材料科學與工程學系,碩士論文,91年。
[22] Yanagisawa, Hideto, et al. "Epitaxial growth of (001) ZrN thin films on (001) Si by low temperature process." Japanese journal of applied physics 44.1R (2005): 343.
[23] 楊尚賢「矽單晶基板上之異質磊晶成長:氮化鈦、氮化鋯、氧化鋅」,國立清華大學材料科學與工程學系,碩士論文,95年。
[24] Rödel, T‐C., et al. "Nitrogen‐doped zirconia single crystals." Crystal Research and Technology 41.10 (2006): 950-954.
[25] Delachaux, T., et al. "Nitriding of tetragonal zirconia in a high current dc plasma source." Thin Solid Films 425.1 (2003): 113-116.
[26] Milani, R., et al. "Nitriding of yttria-stabilized zirconia in atmospheric pressure microwave plasma." Journal of Materials Research 24.6 (2009): 2021-2028.
[27] Callister, William D., and David G. Rethwisch. Materials science and engineering. Vol. 5. NY: John Wiley & Sons, 2011.
[28] Bachmann, Peter K. "Emerging technology of diamond thin films." Chemical and Engineering News 67.20 (1989): 24-39.
[29] Jagannadham, K. "Model of interfacial thermal resistance of diamond composites." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17.2 (1999): 373-379.
[30] Hall, H. Tracy. "Ultra‐High‐Pressure, High‐Temperature Apparatus: the``Belt''." Review of Scientific Instruments 31.2 (1960): 125-131.
[31] Tsuda, Minoru, Mitsuo Nakajima, and Setsuko Oikawa. "Epitaxial growth mechanism of diamond crystal in methane-hydrogen plasma." Journal of the American Chemical Society 108.19 (1986): 5780-5783.
[32] Tsuda, Minoru, Mitsuo Nakajima, and Setsuko Oikawa. "The importance of the positively charged surface for the epitaxial growth of diamonds at low pressure." Japanese journal of applied physics 26.5 (1987): L527-L529.
[33] Liu, Huimin, and David S. Dandy. Diamond chemical vapor deposition: nucleation and early growth stages. Elsevier, 1996.
[34] Hess, Dennis W. "Plasma-assisted oxidation, anodization, and nitridation of silicon." IBM journal of research and development 43.1.2 (1999): 127-145.
[35] Sharma, Shashank, et al. "Selective plasma nitridation and contrast reversed etching of silicon." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 19.5 (2001): 1743-1746.
[36] Bardos, L., J. Musil, and P. Taras. "Differences between microwave and RF activation of nitrogen for the PECVD process." Journal of Physics D: Applied Physics 15.7 (1982): L79.
[37] 馬志成「氮化m面藍寶石基板與鑽石沉積於m面AlN氮化層之研究」,國立交通大學材料科學與工程學系,碩士論文,105年。
[38] Kułakowska-Pawlak, B., and W. Zyrnicki. "Spectroscopic investigations into plasma used for nitriding processes of steel and titanium." Thin Solid Films 230.2 (1993): 115-120.
[39] Van Helden, J. H., et al. "Detailed study of the plasma-activated catalytic generation of ammonia in N 2-H 2 plasmas." Journal of applied physics 101.4 (2007): 043305.
[40] Caruso, R., et al. "Ion nitriding of zirconia coated on stainless steel: structure and mechanical properties." Thin Solid Films 468.1 (2004): 142-148.
[41] Akiyama, Toru, et al. "Nitridation of Al 2 O 3 surfaces: Chemical and structural change triggered by oxygen desorption." Physical review letters 110.2 (2013): 026101.
[42] Yarbrough, Walter A., and Russell Messier. "Current issues and problems in the chemical vapor deposition of diamond." Science 247.4943 (1990): 688-696.][
[43] Yarbrough, W. A. "Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9.3 (1991): 1145-1152.
[44] Jia, C. L., K. Urban, and X. Jiang. "Heteroepitaxial diamond films on silicon (001): Interface structure and crystallographic relations between film and substrate." Physical Review B 52.7 (1995): 5164.
[45] Matsumoto, Seiichiro, and Yoshio Matsui. "Electron microscopic observation of diamond particles grown from the vapour phase." Journal of Materials Science 18.6 (1983): 1785-1793.
[46] Marchand, Alan P. "Diamondoid Hydrocarbons--Delving into Nature's Bounty." Science 299.5603 (2003): 52-53.
[47] Tiwari, Rajanish N., Jitendra N. Tiwari, and Li Chang. "The synthesis of diamond films on adamantane-coated Si substrate at low temperature." Chemical Engineering Journal 158.3 (2010): 641-645.
[48] Yang, Fan, et al. "Deviatoric stress-induced phase transitions in diamantane." The Journal of chemical physics 141.15 (2014): 154305.
[49] Reiser, J., et al. "Adamantane and diamantane; phase diagrams, solubilities, and rates of dissolution." Fluid Phase Equilibria 117.1-2 (1996): 160-167.
[50] https://www.alibaba.com/product-detail/Diamantane_116273148.html
[51] Chang, Li, and Jhih-Kun Yan. "Bias-enhanced nucleation of oriented diamonds on cone-like Si." Diamond and Related Materials 17.4 (2008): 467-471.
[52] Chen, Wei-Chun, et al. "Growth and characterization of diamond films on TiN/Si (100) by microwave plasma chemical vapor deposition." Diamond and Related Materials 18.2 (2009): 124-127.
[53] Contreras, O., G. A. Hirata, and M. Avalos-Borja. "Interface analysis of CVD diamond on TiN surfaces." Applied surface science 158.3 (2000): 236-245.
[54] Fischer, M., et al. "Preparation of 4-inch Ir/YSZ/Si (001) substrates for the large-area deposition of single-crystal diamond." Diamond and Related Materials 17.7 (2008): 1035-1038.
[55] 莊雅琪「(100)Si基板上之TiO2薄膜氮化為TiN磊晶並作為緩衝曾在其上成長鑽石薄膜之研究」,國立交通大學材料科學與工程學系,碩士論文,104年。
[56] Poulon-Quintin, Angéline, et al. "Bilayer systems of tantalum or zirconium nitrides and molybdenum for optimized diamond deposition." Thin Solid Films 519.5 (2010): 1600-1605.
[57] Huang, Bohr-Ran, et al. "Bias effects on large area polycrystalline diamond films synthesized by the bias enhanced growth technique." Diamond and related materials 12.1 (2003): 26-32.
[58] Mermoux, Michel, et al. "Internal stresses in {111} homoepitaxial CVD diamond." Diamond and related materials 13.2 (2004): 329-334.
[59] Mermoux, Michel, et al. "Characterization of< 111> diamond thin films by micro-Raman spectroscopy." Diamond and related materials 13.4 (2004): 886-890.
[60] Mermoux, Michel, et al. "Raman characterization of boron-doped {111} homoepitaxial diamond layers." Diamond and related materials 15.4 (2006): 572-576.
[61] Carrasco, Esther, et al. "Neutral and ion chemistry in low pressure dc plasmas of H 2/N 2 mixtures: routes for the efficient production of NH3 and NH 4+." Physical Chemistry Chemical Physics 13.43 (2011): 19561-19572.
[62] Chevalier, Jerome, et al. "The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends." Journal of the American Ceramic Society 92.9 (2009): 1901-1920.
[63] Perkins, Charles M., et al. "Thermal stability of polycrystalline silicon electrodes on ZrO 2 gate dielectrics." Applied physics letters 81.8 (2002): 1417-1419.
[64] Pukari, Merja, and Masahide Takano. "Sintering and characterization of ZrN and (Dy, Zr) N as surrogate materials for fast reactor nitride fuel." Journal of Nuclear Materials 444.1 (2014): 7-13.
[65] Prieto, P., L. Galán, and J. M. Sanz. "Interaction of oxygen with ZrN at room temperature: An XPS study." Surface and interface analysis 21.6‐7 (1994): 395-399.
[66] Ahn, H., et al. "Characterization of interfacial layer of ultrathin Zr silicate on Si (100) using spectroscopic ellipsometry and HRTEM." Thin Solid Films 455 (2004): 318-322.
[67] Wilk, G. D., and R. M. Wallace. "Stable zirconium silicate gate dielectrics deposited directly on silicon." Applied Physics Letters 76.1 (2000): 112-114.
[68] Coates, John. "Interpretation of infrared spectra, a practical approach." Encyclopedia of analytical chemistry (2000).
[69] Atdaev, B. S., et al. "Epitaxial layers of CdTe on GaP (111) B and (100)." Inorg. Mater.(Engl. Transl.);(United States) 23.12 (1988).
[70] Howard, C. J., and R. J. Hill. "The polymorphs of zirconia: phase abundance and crystal structure by Rietveld analysis of neutron and X-ray diffraction data." Journal of materials science 26.1 (1991): 127-134.
[71] Aoyama, Tatsuji, et al. "Formation of PbZrO3 by transformation of cubic ZrO2 solid solution." Journal of the American Ceramic Society 78.11 (1995): 3163-3164.
[72] Milošev, I., et al. "Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS." Surface and interface analysis 24.7 (1996): 448-458.
[73] Wiame, Hugues, et al. "Thermal oxidation under oxygen of zirconium nitride studied by XPS, DRIFTS, TG-MS." Journal of the European Ceramic Society 18.9 (1998): 1293-1299.
[74] Milošev, Ingrid, et al. "Zirconium Nitride by XPS." Surface Science Spectra 5.2 (1998): 152-158.
[75] Rtimi, Sami, et al. "ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect." Applied Catalysis B: Environmental 138 (2013): 113-121.
[76] Guittet, M. J., J. P. Crocombette, and M. Gautier-Soyer. "Bonding and XPS chemical shifts in ZrSiO 4 versus SiO 2 and ZrO 2: Charge transfer and electrostatic effects." Physical Review B 63.12 (2001): 125117.
[77] May, P. W., et al. "Interactive Raman spectra of adamantane, diamantane and diamond, and their relevance to diamond film deposition." PhysChemComm 1.4 (1998): 35-44.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔