跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/15 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱奕丞
論文名稱:三維積體電路封裝接點之研究:微凸塊可靠度與銅對銅直接接合
論文名稱(外文):Study of interconnects in 3D IC packaging: microbump reliability and Cu-to-Cu direct bonding
指導教授:陳智陳智引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:81
中文關鍵詞:三維積體電路微凸塊熱循環電遷移銅直接接合
外文關鍵詞:3D ICmicrobumpthermal cyclingelectromigrationCu direct bonding
相關次數:
  • 被引用被引用:3
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:1
近年來隨著科技的進步,大量新穎的可攜式電子產品不斷問世。這些產品都是在追求更多的功能,但同時又要以輕薄短小為目標設計。傳統的二維電子封裝似乎已經無法再快速的進展已實踐單位體積或面積內有更多的訊號輸出入。於是將不同元件以垂直堆疊整合的三維積體電路開始受到人們的注目。
在垂直堆疊的結構中,接點扮演著極為重要的角色以穩定地連接不同晶片。目前來說,直徑不到30微米的微凸塊在三維積體電路中是最常做為接點。隨著微凸塊也必須跟著微縮化,當中的銲錫比例逐漸下降,甚至將無銲錫列入微縮化的途徑。而本論文將會逐步研究微凸塊內銲錫減少過程將遇到的難題。
第一部分是討論當微凸塊的銲錫體積已經縮小到直徑約30微米時,一個微凸塊內的銲錫將變成僅由個位數錫晶粒所構成。由於錫有非等向的機械性質,因此在熱循環測試後,容易產生應變產生裂痕。本論文發現有三種裂痕傳播途徑,包含錫晶粒間的高角度晶界、介金屬化合物與銲錫介面以及銲錫與錫銀析出化合物的介面。
當微凸塊微縮化,內部的銲錫量與金屬墊層的體積比率變少時,很容易所有銲錫與金屬墊層反應而消耗殆盡,而留下全介金屬化合物接點。此外,接點本身的重要功能其中之一就是傳遞電流,但是由於微凸塊的電流通過面積小將造成較大的電流密度。因此,在第二部分我們對全介金屬化合物微凸塊進行高電流密度之電遷移測試,發現多孔狀Cu3Sn生成為主要的破壞機制。
第三部分則是研究不使用銲錫作為接點材料,利用銅與銅直接完成連接兩晶片的目的。我們使用電鍍奈米雙晶銅膜與一般銅膜來做接合的材料並且進行比較。從實驗結果發現,奈米雙晶銅膜可在較短的加熱時間或較低溫度完成接合,並且經過適當熱處理能夠發生非等向大晶粒成長,幫助銅晶利成長以消除接合介面。
With evolution of technology in the recent years, more portable electronic products come out. These are pursuing multifunction but also become light and thin in the same time. Traditional 2D electronic packaginghas limited inputs and outputs in unit volume. Therefore, vertical stacking of different devices is needed.
In a vertical stacking structure, joints play important roles to stably connect chips. So far, microbumps with less than 30 μm diameter are commonly used as joints in 3D IC.Continuous miniaturization is needed to provide more inputs and outputs. For this reason, the solder volume will shrink down and may be decreased to zero in the future.. In this study, we studied the problems as the solder volume continue to reduce.
The first issue is the miniaturization of microbumps because the solder in amircobump consist of only few Sn grains. Tin has anisotropic thermal expansion and mechanical behavior. Therefore, cracks formed during thermal cycling tests. We found that cracks may propagate along three path: Sn grainboundaries with high misorientation angles, SnAgsolder/Ni3Sn4 IMC interfaces and Sn/Ag3Sn interfaces.
Transformation of all solders into intermetallic compounds (IMCs) in microbumps is possible when the solder amount is small. In particular, current stressing can accelerate the formation of IMCs. Microbumps have to bear high current densities due to its small diameter and high performance requirements. Therefore, in the second part, we do electromigration tests found that the failure mechanism is due to the formation of porous Cu3Sn.
In the third part, we removed solders as the joint material but chose Cu-to-Cu direct bonding to connect two chips. Electroplated nanotwinned copper and regular copper films were used as bonding materials. The results indicated that it took less time or lower temperatures to accomplish bonding by using nanotwinned copper films. Anisotropic grain growth also happened after proper heat treatment to eliminate the bonding interfaces.
摘要……………………………………………………………………………………………I
ABSTRACT…………………………………………………………………………………III
致謝……………………………………………………………………………………………V
目錄…………………………………………………………………………………………VII
圖目錄……………………………………………………………………………………VIII
表目錄………………………………………………………………………………………XI
第一章文獻回顧與簡介……………………………………………………………………1
1-1.1電子封裝技術簡介………………………………………………………………1
1-1.2覆晶封裝技術演進………………………………………………………………2
1-2.1錫銀合金銲錫……………………………………………………………………3
1-2.2銲錫與金屬墊層的界面反應……………………………………………………4
1-3.1熱循環測試………………………………………………………………………5
1-3.2電遷移理論………………………………………………………………………6
1-3.3銲錫接點內的電流密度分布……………………………………………………7
1-3.4凸塊中銲錫體積的減少…………………………………………………………8
1-3.5孔洞狀CU3SN的形成……………………………………………………………8
1-4.1銅對銅直接接合簡介……………………………………………………………9
1-4.2常見的銅對銅直接接合方式……………………………………………………9
第二章 熱循環測試中直徑20微米之微凸塊內錫晶粒與應力分布之研究………………20
2-1簡介…………………………………………………………………………………20
2-2 實驗步驟…………………………………………………………………………21
2-3 結果與討論………………………………………………………………………23
2-4 結論………………………………………………………………………………26
第三章 銅-錫介金屬化合物微凸塊在高電流應力下之微結構演變之研究……………35
3-1 簡介……………………………………………………………………………35
3-2實驗步驟…………………………………………………………………………36
3-3 結果與討論……………………………………………………………………37
3-4 結論……………………………………………………………………………42
第四章以<111>優選奈米雙晶銅膜大晶粒成長與消除直接銅對銅接合之接合界面…50
4-1 簡介……………………………………………………………………………50
4-2 實驗步驟………………………………………………………………………51
4-3 結果與討論……………………………………………………………………52
4-4 結論……………………………………………………………………………57
第五章 結論…………………………………………………………………………………70
[1] Harman, George G. Wire bonding in microelectronics. McGraw-Hill, 2010.
[2] Lau, John H. Handbook of tape automated bonding. Springer, 1992.
[3] Miller, Lewis F. "Controlled collapse reflow chip joining." IBM Journal of Research and Development 13.3 (1969): 239-250.
[4] Norris, K. C., and A. H. Landzberg. "Reliability of controlled collapse interconnections." IBM Journal of Research and Development 13.3 (1969): 266-271.
[5] Totta, Paul A., and Raeman P. Sopher. "SLT device metallurgy and its monolithic extension." IBM Journal of Research and Development13.3 (1969): 226-238.
[6] Frear, D. R., et al. "Pb-free solders for flip-chip interconnects." Jom53.6 (2001): 28-33.
[7] Knickerbocker, John U., et al. "Three-dimensional silicon integration." IBM Journal of Research and Development 52.6 (2008): 553-569.
[8] Klaas, Jeff. "System-on-a-chip." U.S. Patent No. 6,816,750. 9 Nov. 2004.
[9] Iyer, Subramanian S. "Three-dimensional integration: An industry perspective." MRS Bulletin 40.3 (2015): 225-232.
[10] Rumer, Christopher L., and Edward A. Zarbock. "Through silicon via, folded flex microelectronic package." U.S. Patent No. 6,924,551. 2 Aug. 2005.
[11] Motoyoshi, Makoto. "Through-silicon via (TSV)." Proceedings of the IEEE 97.1 (2009): 43-48.
[12] Takahashi, Kenji, and Masahiro Sekiguchi. "Through silicon via and 3-D wafer/chip stacking technology." VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on. IEEE, 2006.
[13] Lu, J-Q., Timothy S. Cale, and Ronald J. Gutmann. "Wafer-level three-dimensional hyper-integration technology using dielectric adhesive wafer bonding." Materials for Information Technology. Springer London, 2005. 405-417.
[14] Kariya, Yoshiharu, et al. "Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects." Journal of electronic materials 33.4 (2004): 321-328.
[15] Zeng, Kejun, and King-Ning Tu. "Six cases of reliability study of Pb-free solder joints in electronic packaging technology." Materials science and engineering: R: reports 38.2 (2002): 55-105.
[16] Tu, K. N., Fiona Ku, and T. Y. Lee. "Morphological stability of solder reaction products in flip chip technology." Journal of electronic materials 30.9 (2001): 1129-1132.
[17] Kim, H. K., and K. N. Tu. "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening." Physical review B 53.23 (1996): 16027.
[18] Saunders, N., and A. P. Miodownik. "The Cu-Sn (copper-tin) system." Journal of Phase Equilibria 11.3 (1990): 278-287.
[19] Jeon, Young-Doo, et al. "Studies of electroless nickel under bump metallurgy—Solder interfacial reactions and their effects on flip chip solder joint reliability." Journal of Electronic Materials 31.5 (2002): 520-528.
[20] King-Ning, T. U. "Solder Joint Technology: Materials, Properties, and Reliability." (2007).
[21] Lee, J. G., et al. "Modeling thermomechanical fatigue behavior of Sn-Ag solder joints." Journal of Electronic Materials 31.11 (2002): 1152-1159.
[22] Bieler, Thomas R., et al. "Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints." IEEE Transactions on Components and Packaging Technologies 31.2 (2008): 370-381.
[23] Pang, John HL, D. Y. R. Chong, and T. H. Low. "Thermal cycling analysis of flip-chip solder joint reliability." IEEE Transactions on components and packaging technologies 24.4 (2001): 705-712.
[24] Abtew, Mulugeta, and Guna Selvaduray. "Lead-free solders in microelectronics." Materials Science and Engineering: R: Reports27.5 (2000): 95-141.
[25] Chen, Chih, H. M. Tong, and K. N. Tu. "Electromigration and thermomigration in Pb-free flip-chip solder joints." Annual Review of Materials Research 40 (2010): 531-555.
[26] Tu, K. N. "Electromigration in stressed thin films." Physical Review B 45.3 (1992): 1409.
[27] Tu, K. N. "Recent advances on electromigration in very-large-scale-integration of interconnects." Journal of Applied physics 94.9 (2003): 5451-5473.
[28] Chiang, Kuo Ning, et al. "Current crowding-induced electromigration in Sn Ag 3.0 Cu 0.5 microbumps." Applied Physics Letters 88.7 (2006): 072102.
[29] Yeh, Everett CC, et al. "Current-crowding-induced electromigration failure in flip chip solder joints." Applied physics letters 80.4 (2002): 580-582.
[30] Lai, Yi-Shao, and Chin-Li Kao. "Characteristics of current crowding in flip-chip solder bumps." Microelectronics Reliability 46.5 (2006): 915-922.
[31] Liang, S. W., Y. W. Chang, and Chih Chen. "Relieving hot-spot temperature and current crowding effects during electromigration in solder bumps by using Cu columns." Journal of Electronic Materials36.10 (2007): 1348-1354.
[32] Liu, Yingxia, et al. "Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5 D integrated circuits." Journal of Applied Physics 118.13 (2015): 135304.
[33] Yu, Aibin, et al. "Study of 15µm pitch solder microbumps for 3D IC integration." Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. IEEE, 2009.
[34] Hayashi, Tsuyoshi. "An innovative bonding technique for optical chips using solder bumps that eliminate chip positioning adjustments." IEEE transactions on components, hybrids, and manufacturing technology 15.2 (1992): 225-230.
[35] Panchenko, Iuliana, et al. "Degradation of Cu 6 Sn 5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects." Microelectronic Engineering 117 (2014): 26-34.
[36] Lin, Jie-An, et al. "Formation mechanism of porous Cu3Sn intermetallic compounds by high current stressing at high temperatures in low-bump-height solder joints." Crystals 6.1 (2016): 12.
[37] Lin, C. K., et al. "Communication—Formation of Porous Cu3Sn by High-Temperature Current Stressing." ECS Journal of Solid State Science and Technology 5.9 (2016): P461-P463.
[38] Nakajima, K., A. Isogai, and Y. Taga. "Concentration Change of Sn in the Surface Layers of Cu–Sn Alloy System due to Friction." Japanese Journal of Applied Physics 13.S1 (1974): 309.
[39] Gusak, Andriy M., Chih Chen, and K. N. Tu. "Flux-driven cellular precipitation in open system to form porous Cu3Sn." Philosophical Magazine 96.13 (2016): 1318-1331.
[40] Takigawa, Ryo, et al. "Room-temperature bonding of vertical-cavity surface-emitting laser chips on Si substrates using Au microbumps in ambient air." Applied Physics Express 1.11 (2008): 112201.
[41] Oh, Chulmin, Shijo Nagao, and Katsuaki Suganuma. "Pressureless bonding using sputtered Ag thin films." Journal of Electronic Materials 43.12 (2014): 4406-4412.
[42] Oh, Chulmin, et al. "Hillock growth dynamics for Ag stress migration bonding." Materials Letters 137 (2014): 170-173.
[43] Tang, Ya-Sheng, Yao-Jen Chang, and Kuan-Neng Chen. "Wafer-level Cu–Cu bonding technology." Microelectronics Reliability 52.2 (2012): 312-320.
[44] Jung, Moongon, et al. "TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC." Communications of the ACM 57.1 (2014): 107-115.
[45] Kim, T. H., et al. "Room temperature Cu–Cu direct bonding using surface activated bonding method." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21.2 (2003): 449-453.
[46] Park, Jong-Myeong, et al. "Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding." Jpn. J. Appl. Phys 55 (2016): 06JC02.
[47] Liu, Chien-Min, et al. "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu." Scientific reports 5 (2015).
[48] Ladani, Leila J. "Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits." Microelectronic Engineering 87.2 (2010): 208-215.
[49] Shnawah, Dhafer Abdulameer, Mohd Faizul Mohd Sabri, and Irfan Anjum Badruddin. "A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products." Microelectronics reliability 52.1 (2012): 90-99.
[50] Terashima, Shinichi, et al. "Effect of silver content on thermal fatigue life of Sn-xAg-0.5 Cu flip-chip interconnects." Journal of Electronic Materials 32.12 (2003): 1527-1533.
[51] Kariya, Yoshiharu, et al. "Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects." Journal of electronic materials 33.4 (2004): 321-328.
[52] Shen, Yu-An, and Chih Chen. "Effect of Sn grain orientation on formation of Cu 6 Sn 5 intermetallic compounds during electromigration." Scripta Materialia 128 (2017): 6-9.
[53] Sylvestre, Julien, and Alexandre Blander. "Large-scale correlations in the orientation of grains in lead-free solder joints." Journal of Electronic Materials 37.10 (2008): 1618-1623.
[54] Cheng, Hsien-Chie, et al. "Interconnect reliability characterization of a high-density 3-D chip-on-chip interconnect technology." IEEE Transactions on Components, Packaging and Manufacturing Technology 3.12 (2013): 2037-2047.
[55] Liu, Xi, et al. "Thermo-mechanical behavior of through silicon vias in a 3D integrated package with inter-chip microbumps." Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st. IEEE, 2011.
[56] Lee, Chang-Chun, et al. "Reliability enhancements of chip-on-chip package with layout designs of microbumps." Microelectronic Engineering 120 (2014): 138-145.
[57] Lu, Su-Tsai, et al. "Effects of bonding parameters on the reliability of fine-pitch Cu/Ni/SnAg micro-bump chip-to-chip interconnection for three-dimensional chip stacking." IEEE Transactions on Device and Materials Reliability 12.2 (2012): 296-305.
[58] Matin, M. A., et al. "Correlation between thermal fatigue and thermal anisotropy in a Pb-free solder alloy." Scripta Materialia 53.8 (2005): 927-932.
[59] Zhan, Chau-Jie, et al. "Assembly and reliability characterization of 3D chip stacking with 30μm pitch lead-free solder micro bump interconnection." Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. IEEE, 2010.
[60] Lau, John H. "Overview and outlook of through-silicon via (TSV) and 3D integrations." Microelectronics International 28.2 (2011): 8-22.
[61] Lee, Hyeong-Gi, et al. "Wafer-level packages using B-stage nonconductive films for Cu pillar/Sn–Ag microbump interconnection." IEEE Transactions on Components, Packaging and Manufacturing Technology 5.11 (2015): 1567-1572.
[62] Fukushima, Takafumi, et al. "Reconfigured-wafer-to-wafer 3-D integration using parallel self-assembly of chips with Cu–SnAg microbumps and a nonconductive film." IEEE Transactions on Electron Devices 61.2 (2014): 533-539.
[63] Wei, C. C., et al. "Electromigration in Sn–Cu intermetallic compounds." Journal of applied physics 105.2 (2009): 023715.
[64] Kuan, Wei-Chih, S. W. Liang, and Chih Chen. "Effect of bump size on current density and temperature distributions in flip-chip solder joints." Microelectronics Reliability 49.5 (2009): 544-550.
[65] Nogita, K., et al. "Kinetics of the η–η′ transformation in Cu 6 Sn 5." Scripta Materialia 65.10 (2011): 922-925.
[66] Tian, Yanhong, Lina Niu, and Chunqing Wang. "Analysis of Cu6Sn5 grain orientations in Sn3. 0Ag0. 5Cu lead-free solder joints." Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on. IEEE, 2011.
[67] Tan, Chuan Seng, Ronald J. Gutmann, and L. Rafael Reif, eds. Wafer level 3-D ICs process technology. Springer Science & Business Media, 2009.
[68] Gusak, Andriy M., Chih Chen, and K. N. Tu. "Flux-driven cellular precipitation in open system to form porous Cu3Sn." Philosophical Magazine 96.13 (2016): 1318-1331.
[69] Liu, Yingxia, Ying-Ching Chu, and K. N. Tu. "Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter." Acta Materialia 117 (2016): 146-152.
[70] Wang, Liang, et al. "Direct Bond Interconnect (DBI®) for fine-pitch bonding in 3D and 2.5 D integrated circuits." Microelectronics Symposium (Pan Pacific), 2017 Pan Pacific. IEEE, 2017.
[71] Panigrahi, Asisa Kumar, et al. "Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure." Materials Letters 169 (2016): 269-272.
[72] Liu, Chien-Min, et al. "Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces." Scripta Materialia 78 (2014): 65-68.
[73] Chiang, Po-Hao, et al. "Enhanced Cu-to-Cu direct bonding by controlling surface physical properties." Japanese Journal of Applied Physics 56.3 (2017): 035503.
[74] Rebhan, B., and K. Hingerl. "Physical mechanisms of copper-copper wafer bonding." Journal of Applied Physics 118.13 (2015): 135301.
[75] Shin, Chanho, et al. "Current-assisted direct Cu/Cu joining." Scripta Materialia 104 (2015): 21-24.
[76] Suga, Tadatomo, Masakate Akaike, and Wenhua Yang. "Formic acid treatment with Pt catalyst for Cu direct and hybrid bonding at low temperature." Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th. IEEE, 2014.
[77] Arai, Yoshiyuki, Masatsugu Nimura, and Hajime Tomokage. "Cu-Cu direct bonding technology using ultrasonic vibration for flip-chip interconnection." Electronic Packaging and iMAPS All Asia Conference (ICEP-IACC), 2015 International Conference on. IEEE, 2015.
[78] Chua, Shen Lin, and Chuan Seng Tan. "Cu-Cu Die to Die Surface Activated Bonding in Atmospheric Environment Using Ar and Ar/N2 Plasma." ECS Transactions 75.9 (2016): 109-116.
[79] Wu, Zijian, et al. "Low temperature Cu-Cu bonding using copper nanoparticles fabricated by high pressure PVD." AIP Advances 7.3 (2017): 035306.
[80] Hung, H. T., et al. "Chip-to-Chip Direct Interconnections by Using Controlled Flow Electroless Ni Plating." Journal of Electronic Materials (2017): 1-5.
[81] Chen, K. N., et al. "Temperature and duration effects on microstructure evolution during copper wafer bonding." Journal of Electronic Materials 32.12 (2003): 1371-1374.
[82] Lim, D. F., et al. "Cu passivation for enhanced low temperature (⩽ 300° C) bonding in 3D integration." Microelectronic Engineering 106 (2013): 144-148.
[83] Ueno, Kazuyoshi, Tom Ritzdorf, and Scott Grace. "Seed layer dependence of room-temperature recrystallization in electroplated copper films." Journal of applied physics 86.9 (1999): 4930-4935.
[84] Lu, Lei, et al. "Ultrahigh strength and high electrical conductivity in copper." Science 304.5669 (2004): 422-426.
[85] Singh, A., et al. "Fracture toughness and fatigue crack growth characteristics of nanotwinned copper." Acta Materialia 59.6 (2011): 2437-2446.
[86] Lu, L., Z. S. You, and K. Lu. "Work hardening of polycrystalline Cu with nanoscale twins." Scripta Materialia 66.11 (2012): 837-842.
[87] Lu, Chia-Ling, et al. "Extremely anisotropic single-crystal growth in nanotwinned copper." NPG Asia Materials 6 (2014): e135.
[88] Hsiao, Hsiang-Yao, et al. "Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper." Science 336.6084 (2012): 1007-1010.
[89] Huang, Yi-Sa, et al. "Grain growth in electroplated (111)-oriented nanotwinned Cu." Scripta Materialia 89 (2014): 5-8.
[90] Agrawal, Paras M., Betsy M. Rice, and Donald L. Thompson. "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces." Surface Science 515.1 (2002): 21-35.
[91] Greiser, J., P. Müllner, and E. Arzt. "Abnormal growth of “giant” grains in silver thin films." Acta materialia 49.6 (2001): 1041-1050.
[92] Koike, J., et al. "Effects of crystallographic texture on stress-migration resistance in copper thin films." Applied Physics Letters81.6 (2002): 1017-1019.
[93] Thompson, Carl V., and Roland Carel. "Stress and grain growth in thin films." Journal of the Mechanics and Physics of Solids 44.5 (1996): 657-673.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊