(3.215.180.226) 您好!臺灣時間:2021/03/09 03:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳承諺
研究生(外文):Wu,Cheng-Yan
論文名稱:使用麥克風陣列之強健型警報器聲源辨識演算法
論文名稱(外文):A Robust Alarm Sound Identification Algorithm Using Microphone Array
指導教授:胡竹生胡竹生引用關係
指導教授(外文):Hu,Jwu-Sheng
口試委員:王學誠王傑智
口試委員(外文):Wang,Hsueh-ChengWang,Chieh-Chih
口試日期:2017-08-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院聲音與音樂創意科技碩士學位學程
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:60
中文關鍵詞:麥克風陣列羅吉斯回歸波束形成器轉移函式比值法最小方差無失真響應
外文關鍵詞:Microphone ArrayLogistic regressionBeamformerTransfer Function Ratio (TFR) methodMinimum Variance Distortionless Response (MVDR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
  本文提出結合麥克風陣列、適應性濾波器及聲源辨識演算法的警報器偵測系統,可接收多點不同方位之警報器聲源來進行辨識。近年來,物聯網興起,於居家電器裝置結合網路介面進行連網功能,可達到多系統整合以便家庭遠端智慧監控,在現有警報器上加裝網路介面需要改裝原來的設備,並且每一警報器都將增加額外的能量損耗,將會使整體成本提升。本文提出無須額外改造設備及節省成本的系統,透過聲音的傳遞達成傳輸警報至監控系統的功能,用於家中多警報器之偵測,例如:門鎖防盜警報、瓦斯警報、一氧化碳及煙霧警報器。
  文中提出以麥克風陣列技術結合適應性空間濾波器獲得去雜訊聲源,對此聲源頻域與時域做特徵擷取並建立模型,依據警報器週期、主要頻率、頻率分布、過零率及工作週期等特徵,持續判斷環境中是否警報器響起。文章最後,演算法以不同種類的穩態及非穩態噪音於不同訊噪比情況下測試,針對警報音命中率和非警報音命中率進行分析。藉由實際警報器及麥克風陣列之環境配置下進行實驗模擬,利用最小無失真響應的波束形成器達到聲源強化的效果;其中空間前處理所需的角度資訊,事先運用轉移函式比值法求得目標聲源在空間中相對轉移函式做為角度資訊。
  This thesis presents an alarm detection system which combines the microphone arrays, adaptive filter and sound source identification algorithms to receive alarms sound from different orientations and then identify the alarm types. In recent years, the rise of Internet of things (IoT) has added the internet connectivity to various home appliances which allows remote intelligent monitoring and control. However, the installation of network interface to existing alarm systems requires the modifications of original device and each alarm system will consume additional energy too. As a result, the overall cost to upgrade the existing system will be high and not worthwhile. Hence, this thesis proposes a system that eliminates the need for additional modifications of equipment and delivers cost savings. The proposed system has utilized the transmission of alert sound from different alarm systems into a monitoring system for detection of multi-alarm devices at home such as door alarms, gas detector alarms, carbon monoxide and smoke detector alarms.
  In this thesis, a method of using microphones array technology combined with adaptive spatial filter is proposed to obtain the sound source with noise removed. After that, the frequency domain and time domain of this sound source were extracted and modeled. The proposed system can constantly detect the existence of various alarms sound in the environment and identify them based on the characteristics like alarm period, main frequency, frequency distribution, zero-crossing rate and duty cycle. At last, the proposed algorithm was tested under the different kinds of steady-state noise and non-steady state noise with different signal-to-noise ratios. The final results were obtained and analyzed based on the hit rate of alarm sound and non-alarm sound. The experimental setup included the actual alarm systems and microphone arrays where the minimum variance distortionless response (MVDR) beamformer was used for sound source enhancement. The directional information between the sound source and microphones in any given space was required by the spatial preprocessing. This directional information was obtained by calculating the relative transfer function (RTF) using the transfer function ratio (TFR) method.
摘 要 I
ABSTRACT II
致 謝 IV
目 錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 2
1.3 相關文獻探討 3
1.4 論文架構 5
第二章 適應性陣列訊號處理 6
2.1 陣列訊號處理 6
2.2 適應性空間濾波器 10
2.2.1 Minimum Variance Distortionless Response (MVDR) Beamformer 11
第三章 警報器聲源辨識方法 15
3.1 回歸模型 15
3.1.1 線性回歸模型 15
3.1.2 羅吉斯回歸模型 17
3.2 警報音特徵值擷取 23
3.2.1 警報音週期 25
3.2.2 警報音主要頻率 27
3.2.3 警報音主頻率整體時間分布比例 28
3.2.4 警報音頻率分布密度 28
3.2.5 警報音時域之訊號能量 29
3.2.6 警報音過零率 29
3.2.7 警報音工作週期 30
第四章 系統架構與相關技術 32
4.1 應用說明與系統架構 32
4.2 轉移函式比值演算法 34
第五章 實驗結果與分析 36
5.1 實驗前置作業介紹 37
5.2 訓練與測試資料介紹 38
5.3 警報器辨識命中率之評估分析 42
5.3.1 單顆麥克風與線性均勻麥克風陣列實驗與分析 43
5.3.2 線性回歸與羅吉斯回歸模型之警報器辨識命中率分析 50
5.3.3 環境噪音、他類警報音作為干擾聲源之命中率分析 53
5.4 實驗總結 56
第六章 結論 57
6.1 研究成果 57
6.2 未來展望 57
參考文獻 58
[ 1 ] Carbonneau, Marc-André, et al. "Detection of alarms and warning signals on an digital in-ear device." International Journal of Industrial Ergonomics 43.6 (2013): 503-511.
[ 2 ] Edworthy, Judy, et al. "Learning three sets of alarms for the same medical functions: A perspective on the difficulty of learning alarms specified in an international standard." Applied ergonomics 45.5 (2014): 1291-1296.
[ 3 ] Xiao, Xianbo, Hongyu Yao, and Chao Guo. "Automatic detection of alarm sounds in cockpit voice recordings." Control, Automation and Systems Engineering, 2009. CASE 2009. IITA International Conference on. IEEE, 2009.
[ 4 ] Temko, Andrey, et al. "Acoustic event detection and classification." Computers in the human interaction loop (2009): 61-73.
[ 5 ] Edworthy, Judy, Sarah Loxley, and Ian Dennis. "Improving auditory warning design: Relationship between warning sound parameters and perceived urgency." Human factors 33.2 (1991): 205-231.
[ 6 ] Edworthy, Judy. "Medical audible alarms: a review." Journal of the American Medical Informatics Association 20.3 (2012): 584-589.
[ 7 ] Raboshchuk, Ganna, et al. "Automatic detection of equipment alarms in a neonatal intensive care unit environment: a knowledge-based approach." Sixteenth Annual Conference of the International Speech Communication Association. 2015.
[ 8 ] Cooke, Martin, and Daniel PW Ellis. "The auditory organization of speech and other sources in listeners and computational models." Speech communication 35.3 (2001): 141-177.
[ 9 ] Ellis, Daniel. "Detecting alarm sounds." Proc. Workshop on Consistent and Reliable Acoustic Cues CRAC-2000. 2001.
[ 10 ] Y. H. Chen and C. T. Chiang, “Adaptive beamforming using the constrained kalman filter”, IEEE Transactions On Antennas And Propagation, vol. 41, no. 11, November 1993.
[ 11 ] Menard, Scott. Applied logistic regression analysis. Vol. 106. Sage, 2002.
[ 12 ] B. V. Veen and K. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE Acoust., Speech, Signal Process. Mag., vol. 5,no. 2, pp. 4–24, Apr. 1988.
[ 13 ] O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,” Proc. IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.
[ 14 ] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE vol.57, no.8, 8,August 1969
[ 15 ] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas Propag., vol.30, no. 1, pp. 27–34, Jan. 1982.
[ 16 ] K. Buckley, “A short proof of the equivalence of LCMV and GSC beamforming,” IEEE Trans. Signal Process. Lett., vol. 9, no. 6, pp. 168–169, Jun. 2002.
[ 17 ] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamforming and nonstationarity with applications to speech,” IEEE Trans. Signal Process., vol. 49, no. 8, pp. 1614–1626, Aug. 2001.
[ 18 ] G. Reuven, S. Gannot, and I. Cohen, “Dual-source transfer-function generalized Sidelobe canceller,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 4, may 2008.
[ 19 ] Hu, Wenping, et al. "Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regression classifiers." Speech Communication 67 (2015): 154-166.
[ 20 ] Kleinbaum, David G., and Mitchel Klein. "Analysis of matched data using logistic regression." Logistic regression. Springer New York, 2010. 389-428
[ 21 ] O. Shalvi and E. Weinstein, “System identification using nonstationary signals,” IEEE Trans. Signal Process., vol. 40, no. 8, pp. 2055–2063, Aug. 1996.
[ 22 ] I. Cohen, “Relative transfer function identification using speech signals,” IEEE Trans. Speech Audio Process., vol. 12, no. 5, pp. 451–459,Sep. 2004.
[ 23 ] H.L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, John Wiley & Sons,Inc., New York, 2002.
[ 24 ] Moore, Brian CJ. An introduction to the psychology of hearing. Brill, 2012.
[ 25 ] Ross, M., et al. "Average magnitude difference function pitch extractor." IEEE Transactions on Acoustics, Speech, and Signal Processing 22.5 (1974): 353-362.
[ 26 ] S. Haykin, Adaptive Filter Theory, Prentice Hall, New Jersey,4rd edition, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔