(54.236.58.220) 您好!臺灣時間:2021/02/28 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭學謙
研究生(外文):Hseuh Chien Hsiao
論文名稱:光交聯蛋白質水膠於傷口復原之應用
論文名稱(外文):Development of photo-crosslinking protein hydrogel for wound dressing
指導教授:許馨云許馨云引用關係
指導教授(外文):Hsu Hsin-Yun
口試委員:廖奕翰黃義侑洪嘉呈賴秉杉許馨云
口試委員(外文):Ian LiauYi-You HuangJia-Cherng HorngPing-Shan LaiHsin-Yun Hsu
口試日期:2017-09-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系分子科學碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:蛋白質水膠大豆分離蛋白光交聯傷口復原膠原蛋白模擬胜肽
外文關鍵詞:protein hydrogelsoy protein isolate (SPI)photo-crosslinkingwound healingcollagen mimetic peptide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Contents
中文摘要 I
Abstract II
Acknowledgement III
Contents IV
Figure captions V
Table captions I
Chapter 1 Introduction 2
1.1 Hydrogels and wound healing 2
1.2 Photo-crosslinking soy protein hydrogel in wound healing 6
Chapter 2 Motivation 10
Chapter 3 Material and Methods 11
3.1 Materials 11
3.2 Preparation of soy protein hydrogels 11
3.3 Detection of di-tyrosine contents in soy protein hydrogels. 12
3.4 Mechanical properties characterization by AFM 12
3.5 Surface morphology of soy protein hydrogel 13
3.6 Water absorption capacity 13
3.7 In vitro drug release and permeability experiment 14
3.8 Cell viability and cell adhesion assays 14
3.9 Peptide synthesis 15
3.10 Circular dichroism (CD) spectra and melting point measurement 15
3.11 Electric cell-substrate impedance sensing (ECIS) 15
3.12 Anti-bacterial test 16
3. 13 Animal skin test 16
3.14 In vivo experiment 17
Chapter 4 Result and Discussion 18
4.1 Preparation of soy protein hydrogels 18
4.2 Characterization of soy protein hydrogel formation 19
4.2.1 Di-tyrosine fluorescence analysis 19
4.2.2 Measurement of mechanical properties by AFM 21
4.2.3 Surface morphology of soy protein hydrogel 23
4.2.4 Water retention test 25
4.2.5 In vitro drug release 26
4.3 Cell-hydrogel interactions 28
4.3.1 Cell viability and adhesion 28
4.3.2 Collagen mimetic peptides ((POG)10, (POG)10Y and YG(POG)10Y) for soy protein hydrogel optimization 30
4.3.3 Electric cell-substrate impedance sensing (ECIS) 37
4.3.4 Circular dichroism measurement and melting point determination 39
4.3.5 Anti-bacterial effect 41
4.3.6 Porcine skin adhesion 43
4.3.7 In vivo experiment 44
4.3.8 Histological analyses 46
Chapter 5 Conclusion and perspectives 47
Supplementary Information 49
Reference
1. Peppas, N. A.; Khare, A. R., Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled Release. Adv. Drug Delivery Rev. 1993, 11 (1), 1-35.
2. Graham, N. B.; McNeill, M. E., Hydrogels for Controlled Drug Delivery. Biomaterials 1984, 5 (1), 27-36.
3. Field, C. K.; Kerstein, M. D., Overview of Wound Healing in a Moist Environment. Am. J. Surgery 1994, 167 (1), S2-S6.
4. Okan, D.; Woo, K.; Ayello, E. A.; Sibbald, G., The Role of Moisture Balance in Wound Healing. Adv Skin Wound Care 2007, 20 (1), 39-53.
5. Kannon, G. A.; Garrett, A. B., Moist Wound Healing with Occlusive Dressings. Dermatol. Surg. 1995, 21 (7), 583-590.
6. Lei, K.; Shen, W.; Cao, L.; Yu, L.; Ding, J., An Injectable Thermogel with High Radiopacity. Chem. Commun. (Cambridge, U. K.) 2015, 51 (28), 6080-6083.
7. Wang, X.; Hu, H.; Wang, W.; Lee, K. I.; Gao, C.; He, L.; Wang, Y.; Lai, C.; Fei, B.; Xin, J. H., Antibacterial Modification of an Injectable, Biodegradable, Non-Cytotoxic Block Copolymer-Based Physical Gel with Body Temperature-Stimulated Sol-Gel Transition and Controlled Drug Release. Colloids Surf., B 2016, 143, 342-351.
8. Rasool, N.; Yasin, T.; Heng, J. Y. Y.; Akhter, Z., Synthesis and Characterization of Novel Ph-, Ionic Strength and Temperature- Sensitive Hydrogel for Insulin Delivery. Polymer 2010, 51 (8), 1687-1693.
9. Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z., A Biodegradable Hydrogel System Containing Curcumin Encapsulated in Micelles for Cutaneous Wound Healing. Biomaterials 2013, 34 (27), 6377-6387.
10. Lee, P.-Y.; Li, Z.; Huang, L., Thermosensitive Hydrogel as a Tgf-Β1 Gene Delivery Vehicle Enhances Diabetic Wound Healing. Pharm. Res. 2003, 20 (12), 1995-2000.
11. Heilmann, S.; Küchler, S.; Wischke, C.; Lendlein, A.; Stein, C.; Schäfer-Korting, M., A Thermosensitive Morphine-Containing Hydrogel for the Treatment of Large-Scale Skin Wounds. Int. J. Pharm. (Amsterdam, Neth.) 2013, 444 (1), 96-102.
12. Jorgensen, L. N., Collagen Deposition in the Subcutaneous Tissue During Wound Healing in Humans: A Model Evaluation. APMIS, Suppl. 2003, (115), 1-56.
13. Diegelmann, R. F.; Evans, M. C., Wound Healing: An Overview of Acute, Fibrotic and Delayed Healing. Front Biosci 2004, 9, 283-9.
14. Lynn, A. K.; Yannas, I. V.; Bonfield, W., Antigenicity and Immunogenicity of Collagen. J. Biomed. Mater. Res., Part B 2004, 71B (2), 343-354.
15. Ruszczak, Z., Effect of Collagen Matrices on Dermal Wound Healing. Adv. Drug Delivery Rev. 2003, 55 (12), 1595-1611.
16. Lynn, A.; Yannas, I.; Bonfield, W., Antigenicity and Immunogenicity of Collagen. J. Biomed. Mater. Res., Part B 2004, 71 (2), 343-354.
17. Furthmayr, H.; Beil, W.; Timpl, R., Different Antigenic Determinants in the Polypeptide Chains of Human Collagen. FEBS Lett. 1971, 12 (6), 341-344.
18. Uchio, Y.; Ochi, M.; Matsusaki, M.; Kurioka, H.; Katsube, K., Human Chondrocyte Proliferation and Matrix Synthesis Cultured in Atelocollagen Gel. Journal of biomedical materials research 2000, 50 (2), 138-43.
19. Iwasa, J.; Ochi, M.; Uchio, Y.; Katsube, K.; Adachi, N.; Kawasaki, K., Effects of Cell Density on Proliferation and Matrix Synthesis of Chondrocytes Embedded in Atelocollagen Gel. Artif. Organs 2003, 27 (3), 249-55.
20. Van Vlierberghe, S.; Dubruel, P.; Schacht, E., Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12 (5), 1387-1408.
21. Juris, S.; Mueller, A.; Smith, B.; Johnston, S.; Walker, R.; Kross, R., Biodegradable Polysaccharide Gels for Skin Scaffolds. J. Biomater. Nanobiotechnol. 2011, 2 (3), 216-225.
22. Snyders, R.; Shingel, K. I.; Zabeida, O.; Roberge, C.; Faure, M. P.; Martinu, L.; Klemberg‐Sapieha, J. E., Mechanical and Microstructural Properties of Hybrid Poly (Ethylene Glycol)–Soy Protein Hydrogels for Wound Dressing Applications. J. Biomed. Mater. Res., Part A 2007, 83 (1), 88-97.
23. Peles, Z.; Zilberman, M., Novel Soy Protein Wound Dressings with Controlled Antibiotic Release: Mechanical and Physical Properties. Acta Biomater. 2012, 8 (1), 209-217.
24. Ebaid, H.; Salem, A.; Sayed, A.; Metwalli, A., Whey Protein Enhances Normal Inflammatory Responses During Cutaneous Wound Healing in Diabetic Rats. Lipids Health Dis. 2011, 10 (1), 235.
25. Badr, G.; Badr, B. M.; Mahmoud, M. H.; Mohany, M.; Rabah, D. M.; Garraud, O., Treatment of Diabetic Mice with Undenatured Whey Protein Accelerates the Wound Healing Process by Enhancing the Expression of Mip-1α, Mip-2, Kc, Cx3cl1 and Tgf-Β in Wounded Tissue. BMC Immunol. 2012, 13 (1), 32.
26. Preethi, K.; Kuttan, G.; Kuttan, R., Antioxidant Potential of an Extract of Calendula Officinalis. Flowers in Vitro. And in Vivo. Pharm. Biol. 2006, 44 (9), 691-697.
27. Aoki, S.; Takezawa, T.; Ikeda, S.; Narisawa, Y.; Oshikata-Miyazaki, A.; Miyauchi, S.; Hirayama, H.; Sawaguchi, T.; Chimuro, T.; Toda, S., A New Cell-Free Bandage-Type Artificial Skin for Cutaneous Wounds. Wound Repair Regen. 2015, 23 (6), 819-829.
28. STUCHELL, Y. M.; KROCHTA, J. M., Enzymatic Treatments and Thermal Effects on Edible Soy Protein Films. J. Food Sci. 1994, 59 (6), 1332-1337.
29. Caillard, R.; Remondetto, G.; Subirade, M., Physicochemical Properties and Microstructure of Soy Protein Hydrogels Co-Induced by Maillard Type Cross-Linking and Salts. Food Res. Int. 2009, 42 (1), 98-106.
30. Toledano, S.; Williams, R. J.; Jayawarna, V.; Ulijn, R. V., Enzyme-Triggered Self-Assembly of Peptide Hydrogels Via Reversed Hydrolysis. J. Am. Chem. Soc. 2006, 128 (4), 1070-1071.
31. Elvin, C. M.; Carr, A. G.; Huson, M. G.; Maxwell, J. M.; Pearson, R. D.; Vuocolo, T.; Liyou, N. E.; Wong, D. C. C.; Merritt, D. J.; Dixon, N. E., Synthesis and Properties of Crosslinked Recombinant Pro-Resilin. Nature (London, U. K.) 2005, 437 (7051), 999-1002.
32. Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., Organocatalytic Visible Light Induced S–S Bond Formation for Oxidative Coupling of Thiols to Disulfides. Tetrahedron 2016, 72 (6), 788-793.
33. Whittaker, J. L.; Choudhury, N. R.; Dutta, N. K.; Zannettino, A., Facile and Rapid Ruthenium Mediated Photo-Crosslinking of Bombyx Mori Silk Fibroin. J. Mater. Chem. B 2014, 2 (37), 6259-6270.
34. Jeon, E. Y.; Hwang, B. H.; Yang, Y. J.; Kim, B. J.; Choi, B.-H.; Jung, G. Y.; Cha, H. J., Rapidly Light-Activated Surgical Protein Glue Inspired by Mussel Adhesion and Insect Structural Crosslinking. Biomaterials 2015, 67, 11-19.
35. Buettner, G., Molecular Targets of Photosensitization—Some Biological Chemistry of Singlet Oxygen. Photochem. Photobiol. Sci. 2011.
36. thermofisher. Photoreactive Crosslinker Chemistry. https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/photoreactive-crosslinker-chemistry.html.
37. McCall, A. S.; Kraft, S.; Edelhauser, H. F.; Kidder, G. W.; Lundquist, R. R.; Bradshaw, H. E.; Dedeic, Z.; Dionne, M. J.; Clement, E. M.; Conrad, G. W., Mechanisms of Corneal Tissue Cross-Linking in Response to Treatment with Topical Riboflavin and Long-Wavelength Ultraviolet Radiation (Uva). Invest. Ophthalmol. Visual Sci. 2010, 51 (1), 129-138.
38. Smeds, K. A.; Grinstaff, M. W., Photocrosslinkable Polysaccharides for in Situ Hydrogel Formation. J. Biomed. Mater. Res., Part A 2001, 54 (1), 115-121.
39. Chou, A. I.; Akintoye, S. O.; Nicoll, S. B., Photo-Crosslinked Alginate Hydrogels Support Enhanced Matrix Accumulation by Nucleus Pulposus Cells in Vivo. Osteoarthritis Cartilage 2009, 17 (10), 1377-1384.
40. Loebel, C.; Broguiere, N.; Alini, M.; Zenobi-Wong, M.; Eglin, D., Microfabrication of Photo-Cross-Linked Hyaluronan Hydrogels by Single-and Two-Photon Tyramine Oxidation. Biomacromolecules 2015, 16 (9), 2624-2630.
41. Yi, Y.; Xu, S.; Sun, H.; Chang, D.; Yin, Y.; Zheng, H.; Xu, H.; Lou, Y., Gelation of Photocrosslinkable Carboxymethyl Chitosan and Its Application in Controlled Release of Pesticide. Carbohydr. Polym. 2011, 86 (2), 1007-1013.
42. Amsden, B., Photo-Crosslinking Methods to Design Hydrogels. Gels Handbook: Fundamentals, Properties and Applications (In 3 Volumes) Volume 1: Fundamentals of HydrogelsVolume 2: Applications of Hydrogels in Regenerative MedicineVolume 3: Application of Hydrogels in Drug Delivery and Biosensing 2016, 201.
43. He, M.; Han, B.; Jiang, Z.; Yang, Y.; Peng, Y.; Liu, W., Synthesis of a Chitosan-Based Photo-Sensitive Hydrogel and Its Biocompatibility and Biodegradability. Carbohydr. Polym. 2017, 166, 228-235.
44. Jiang, J.; Xiong, Y. L.; Chen, J., Ph Shifting Alters Solubility Characteristics and Thermal Stability of Soy Protein Isolate and Its Globulin Fractions in Different Ph, Salt Concentration, and Temperature Conditions. J. Agric. Food Chem. 2010, 58 (13), 8035-8042.
45. Song, F.; Tang, D.-L.; Wang, X.-L.; Wang, Y.-Z., Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules 2011, 12 (10), 3369-3380.
46. Park, S.; Hettiarachchy, N.; Were, L., Degradation Behavior of Soy Protein− Wheat Gluten Films in Simulated Soil Conditions. J. Agric. Food Chem. 2000, 48 (7), 3027-3031.
47. Chien, K. B.; Chung, E. J.; Shah, R. N., Investigation of Soy Protein Hydrogels for Biomedical Applications: Materials Characterization, Drug Release, and Biocompatibility. J. Biomater. Appl. 2014, 28 (7), 1085-1096.
48. Yu, J.; Bi, X.; Yu, B.; Chen, D., Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016, 8 (6), 361.
49. Gerstenhaber, J. A.; Brodsky, R.; Huneke, R. B.; Lelkes, P. I., Electrospun Soy Protein Scaffolds as Wound Dressings: Enhanced Reepithelialization in a Porcine Model of Wound Healing. Wound Medicine 2014, 5, 9-15.
50. Peles, Z.; Binderman, I.; Berdicevsky, I.; Zilberman, M., Soy Protein Films for Wound‐Healing Applications: Antibiotic Release, Bacterial Inhibition and Cellular Response. J. Tissue Eng. Regener. Med. 2013, 7 (5), 401-412.
51. Shih, F. F., Interaction of Soy Isolate with Polysaccharide and Its Effect on Film Properties. J Am Oil Chem Soc. 1994, 71 (11), 1281-1285.
52. Wu, R.-L.; Wang, X.-L.; Wang, Y.-Z.; Bian, X.-C.; Li, F., Cellulose/Soy Protein Isolate Blend Films Prepared Via Room-Temperature Ionic Liquid. Ind. Eng. Chem. Res. 2009, 48 (15), 7132-7136.
53. Jia, D.; Fang, Y.; Yao, K., Water Vapor Barrier and Mechanical Properties of Konjac Glucomannan–Chitosan–Soy Protein Isolate Edible Films. Food Bioprod. Process. 2009, 87 (1), 7-10.
54. Denavi, G. A.; Pérez-Mateos, M.; Añón, M. C.; Montero, P.; Mauri, A. N.; Gomez-Guillen, M. C., Structural and Functional Properties of Soy Protein Isolate and Cod Gelatin Blend Films. Food Hydrocolloids 2009, 23 (8), 2094-2101.
55. Applegate, M. B.; Partlow, B. P.; Coburn, J.; Marelli, B.; Pirie, C.; Pineda, R.; Kaplan, D. L.; Omenetto, F. G., Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Adv Mater 2016, 28 (12), 2417-20.
56. Choh, S.-Y.; Cross, D.; Wang, C., Facile Synthesis and Characterization of Disulfide-Cross-Linked Hyaluronic Acid Hydrogels for Protein Delivery and Cell Encapsulation. Biomacromolecules 2011, 12 (4), 1126-1136.
57. Halstead, F. D.; Thwaite, J. E.; Burt, R.; Laws, T. R.; Raguse, M.; Moeller, R.; Webber, M. A.; Oppenheim, B. A., Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms. Appl. Environ. Microbiol. 2016, 82 (13), 4006-4016.
58. Adamskaya, N.; Dungel, P.; Mittermayr, R.; Hartinger, J.; Feichtinger, G.; Wassermann, K.; Redl, H.; van Griensven, M., Light Therapy by Blue Led Improves Wound Healing in an Excision Model in Rats. Injury 2011, 42 (9), 917-921.
59. Sinz, A., Chemical Cross‐Linking and Mass Spectrometry to Map Three‐Dimensional Protein Structures and Protein–Protein Interactions. Mass Spectrom. Rev. 2006, 25 (4), 663-682.
60. Peng, K.; Tomatsu, I.; Kros, A., Light Controlled Protein Release from a Supramolecular Hydrogel. Chem. Commun. (Cambridge, U. K.) 2010, 46 (23), 4094-4096.
61. Hammann, F.; Schmid, M., Determination and Quantification of Molecular Interactions in Protein Films: A Review. Materials 2014, 7 (12), 7975-7996.
62. Wollensak, G.; Spoerl, E.; Seiler, T., Riboflavin/Ultraviolet-a–Induced Collagen Crosslinking for the Treatment of Keratoconus. Am. J. Ophthalmol. 2003, 135 (5), 620-627.
63. Heo, J.; Koh, R. H.; Shim, W.; Kim, H. D.; Yim, H.-G.; Hwang, N. S., Riboflavin-Induced Photo-Crosslinking of Collagen Hydrogel and Its Application in Meniscus Tissue Engineering. Drug Delivery Transl. Res. 2016, 6 (2), 148-158.
64. Ibusuki, S.; Halbesma, G. J.; Randolph, M. A.; Redmond, R. W.; Kochevar, I. E.; Gill, T. J., Photochemically Cross-Linked Collagen Gels as Three-Dimensional Scaffolds for Tissue Engineering. Tissue Eng. 2007, 13 (8), 1995-2001.
65. Brinkman, W. T.; Nagapudi, K.; Thomas, B. S.; Chaikof, E. L., Photo-Cross-Linking of Type I Collagen Gels in the Presence of Smooth Muscle Cells: Mechanical Properties, Cell Viability, and Function. Biomacromolecules 2003, 4 (4), 890-895.
66. Whittaker, J.; Dutta, N.; Elvin, C.; Choudhury, N., Fabrication of Highly Elastic Resilin/Silk Fibroin Based Hydrogel by Rapid Photo-Crosslinking Reaction. J. Mater. Chem. B 2015, 3 (32), 6576-6579.
67. Rouillard, A. D.; Berglund, C. M.; Lee, J. Y.; Polacheck, W. J.; Tsui, Y.; Bonassar, L. J.; Kirby, B. J., Methods for Photocrosslinking Alginate Hydrogel Scaffolds with High Cell Viability. Tissue Eng., Part C 2010, 17 (2), 173-179.
68. Baier Leach, J.; Bivens, K. A.; Patrick Jr, C. W.; Schmidt, C. E., Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds. Biotechnol. Bioeng. 2003, 82 (5), 578-589.
69. Ishihara, M.; Obara, K.; Ishizuka, T.; Fujita, M.; Sato, M.; Masuoka, K.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Kikuchi, M.; Kurita, A., Controlled Release of Fibroblast Growth Factors and Heparin from Photocrosslinked Chitosan Hydrogels and Subsequent Effect on in Vivo Vascularization. J. Biomed. Mater. Res., Part A 2003, 64A (3), 551-559.
70. Hwang, D. C.; Damodaran, S., Equilibrium Swelling Properties of a Novel Ethylenediaminetetraacetic Dianhydride (Edtad)‐Modified Soy Protein Hydrogel. J. Appl. Polym. Sci. 1996, 62 (8), 1285-1293.
71. González, A.; Tártara, L. I.; Palma, S. D.; Igarzabal, C. I. A., Crosslinked Soy Protein Films and Their Application as Ophthalmic Drug Delivery System. Mater. Sci. Eng., C 2015, 51, 73-79.
72. Chen, L.; Remondetto, G.; Rouabhia, M.; Subirade, M., Kinetics of the Breakdown of Cross-Linked Soy Protein Films for Drug Delivery. Biomaterials 2008, 29 (27), 3750-3756.
73. Liu, Y.; Cui, Y.; Yin, G.; Ma, H., Synthesis, Characterization, and Drug Release Behaviour of Novel Soy Protein/Poly (Acrylic Acid) Ipn Hydrogels. Iran. Polym. J. 2009, 18, 339-348.
74. Dorkoosh, F. A.; Setyaningsih, D.; Borchard, G.; Rafiee-Tehrani, M.; Verhoef, J. C.; Junginger, H. E., Effects of Superporous Hydrogels on Paracellular Drug Permeability and Cytotoxicity Studies in Caco-2 Cell Monolayers. Int. J. Pharm. (Amsterdam, Neth.) 2002, 241 (1), 35-45.
75. Mihaila, S. M.; Gaharwar, A. K.; Reis, R. L.; Marques, A. P.; Gomes, M. E.; Khademhosseini, A., Photocrosslinkable Kappa‐Carrageenan Hydrogels for Tissue Engineering Applications. Adv. Healthcare Mater. 2013, 2 (6), 895-907.
76. Jeon, O.; Powell, C.; Ahmed, S. M.; Alsberg, E., Biodegradable, Photocrosslinked Alginate Hydrogels with Independently Tailorable Physical Properties and Cell Adhesivity. Tissue Eng., Part A 2010, 16 (9), 2915-2925.
77. Zhang, Y. N.; Avery, R. K.; Vallmajo‐Martin, Q.; Assmann, A.; Vegh, A.; Memic, A.; Olsen, B. D.; Annabi, N.; Khademhosseini, A., A Highly Elastic and Rapidly Crosslinkable Elastin‐Like Polypeptide‐Based Hydrogel for Biomedical Applications. Advanced functional materials 2015, 25 (30), 4814-4826.
78. Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z. Y.; Cui, W.; Annabi, N.; Ng, K. W.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Khademhosseini, A., Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Adv. Healthcare Mater. 2016, 5 (1), 108-118.
79. Jeon, O.; Powell, C.; Solorio, L. D.; Krebs, M. D.; Alsberg, E., Affinity-Based Growth Factor Delivery Using Biodegradable, Photocrosslinked Heparin-Alginate Hydrogels. J. Controlled Release 2011, 154 (3), 258-266.
80. Schmedlen, R. H.; Masters, K. S.; West, J. L., Photocrosslinkable Polyvinyl Alcohol Hydrogels That Can Be Modified with Cell Adhesion Peptides for Use in Tissue Engineering. Biomaterials 2002, 23 (22), 4325-4332.
81. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N., Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials 2001, 22 (8), 763-768.
82. Sasaki, N.; Odajima, S., Stress-Strain Curve and Young's Modulus of a Collagen Molecule as Determined by the X-Ray Diffraction Technique. J Biomech 1996, 29 (5), 655-658.
83. McHugh, T. H.; Krochta, J. M., Sorbitol-Vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation. J. Agric. Food Chem. 1994, 42 (4), 841-845.
84. Bigi, A.; Panzavolta, S.; Rubini, K., Relationship between Triple-Helix Content and Mechanical Properties of Gelatin Films. Biomaterials 2004, 25 (25), 5675-5680.
85. Grant, C. A.; Brockwell, D. J.; Radford, S. E.; Thomson, N. H., Tuning the Elastic Modulus of Hydrated Collagen Fibrils. Biophys. J. 2009, 97 (11), 2985-2992.
86. Grab, B.; Miles, A. J.; Furcht, L. T.; Fields, G. B., Promotion of Fibroblast Adhesion by Triple-Helical Peptide Models of Type I Collagen-Derived Sequences. J. Biol. Chem. 1996, 271 (21), 12234-12240.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔