|
[1] “Amazing Social Media Statistics You Should Know in 2016,” SocialPilot.co. [Online]. Available:https://socialpilot.co/blog/125-amazing-social-media-statistics-know-2016/. [2] “Astonishing Twitter Stats and Facts for 2016,” Brandwatch. [Online]. Available: https://www.brandwatch.com/blog/44-twitter-stats-2016/. [3] R. Nugroho, W. Zhao, J. Yang, C. Paris, and S. Nepal, “Using time-sensitive interactions to improve topic derivation in twitter,” World Wide Web, vol. 20, no. 1, pp. 61–87, Jun. 2016. [4] R. Nugroho, J. Yang, Y. Zhong, C. Paris and S. Nepal, “Deriving Topics in Twitter by Exploiting Tweet Interactions,” in Proc. IEEE International Congress on Big Data, 2015. [5] “About replies and mentions | Twitter Help Center,” Twitter. [Online]. Available: https://support.twitter.com/articles/14023. [6] Dat Quoc Nguyen, Richard Billingsley, Lan Du and Mark Johnson, “Improving topic models with latent feature word representations,” Transactions of the Association for Computational Linguistics, vol. 3, pp. 299-313, 2015. [7] X. Yan, J. Guo, S. Liu, X. Cheng and Y. Wang, “Learning Topics in Short Texts by Non-negative Matrix Factorization on Term Correlation Matrix,” in Proc. Proceedings of the SIAM International Conference on Data Mining, pp. 749-757, 2013. [8] Liu, H. Yang, J. Fan, L. He and Y. Wang, “Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce,” in Proc. Proceedings of the 19th international conference on World wide web - WWW '10, 2010. [9] R. Nugroho, Y. Zhong, J. Yang, C. Paris, and S. Nepal, “Matrix Inter-joint Factorization - A New Approach for Topic Derivation in Twitter,” in Proc. IEEE International Congress on Big Data, 2015. [10] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, pp. 556–562, 2000. [11] Myasuka, “PasaLab/marlin,” GitHub. [Online]. Available: https:// github.com/PasaLab/marlin. [12] “Apache Spark™ - Lightning-Fast Cluster Computing,” Spark.apache.org. [Online]. Available: https://spark.apache.org/. [13] “Google Trends,” Google Trends, 2016. [Online]. Available: https:// www.google.com/trends/explore?date=2016-01-01%202016-1231&geo=US&q=% 2Fm%2F02l3h. [14] G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of. Addison-Wesley, 1989. [15] D. H. Von Seggern, CRC Standard Curves and Surfaces with Mathematica. CRC Press, 2006. [16] S. Kullback, Information theory and statistics. Courier Dover Publications, 1997. [17] C. Manning, P. Raghavan, and H. Sch¨utze, Introduction to information retrieval. Cambridge university press Cambridge, 2008, vol. 1. [18] “Twitter Sentiment Corpus,” Sanders Analytics LLC. [Online]. Available: http:// www.sananalytics.com/lab/twitter-sentiment/. [19] “Cloud Dataproc - Managed Spark & Managed Hadoop Service | Google Cloud Platform,” Google Cloud Platform, 2017. [Online]. Available: https:// cloud.google.com/dataproc/. [20] “Twitter Sentiment Corpus,” Sanders Analytics LLC. [Online]. Available: http://www.sananalytics.com/lab/twitter-sentiment/. [21] “Machine Types | Compute Engine Documentation | Google Cloud Platform,” Google. [Online]. Available: https://goo.gl/CcmFwF. [22] “Evaluation of clustering,” Evaluation of clustering. [Online]. Available: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html. [23] “F1 score,” Wikipedia, 12-Jul-2017. [Online]. Available: https://goo.gl/RY8lGd. [24] N. Chang, S. Chen, J. Yeh, M. Huang, Claven and W. Yang, “A Concept Extraction Approach for Document Clustering,” International Conference on Advanced Information Technologies, 2008. [25] S. S. Du, Y. Liu, B. Chen, and L. Li, “Maxios: Large scale nonnegative matrix factorization for collaborative filtering.” [26] “Apache Flink:Scalable Stream and Batch Data Processing,” Flink.apache.org,2017. [Online]. Aailable: https://flink.apache.org/.
|