(3.237.178.91) 您好!臺灣時間:2021/03/02 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:耿介夫
研究生(外文):Geng,Jie-Fu
論文名稱:iToy: 基於智慧手機上使用者自訂規則的物聯網系統
論文名稱(外文):iToy: A Novel IoT System based on Smartphone and User-defined Rules
指導教授:曾煜棋曾煜棋引用關係
指導教授(外文):Tseng,Yu-Chee
口試委員:潘孟鉉范倫達林政寬
口試委員(外文):Pan,Meng-ShiuanVan,Lan-DaLin,Cheng-Kuan
口試日期:2017-8-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:45
中文關鍵詞:藍牙信號物聯網敲擊識別智慧手機
外文關鍵詞:BeaconsBLEIoTKnocking sound recognitionSmart phone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
物聯網(IoT)在近幾年變得非常流行。物聯網使物聯網設備,雲伺服器和使用者之間的相互通訊連接。物聯網設備的範圍從小標籤,感測器,智慧手機到更複雜的機器。各種小規模的物聯網應用程式在市場上出現,這使我們的生活更輕鬆和更智慧。這些物聯網應用通常由一組物聯網設備和一個智慧控制器(通常是一個智慧手機)。物聯網設備是用來收集使用者或環境的資料,而智慧控制器是用來作為使用者介面(使用者介面)與使用者交互。我們提出了一個新的物聯網系統(稱為智慧玩具,或者簡稱為iToy)用於智慧手機。iToy系統由一個智慧手機、使用者自訂規則、感測器和被控制的設備組成。使用者輸入規則到iToy系統中,每一個規則有一個運行命令和一組條件。根據這些規則,當某個規則中的條件被滿足時,iToy系統將命令設備執行該規則中指定的操作。iToy系統可以與各種常見的beacons進行通信。進一步,我們為iToy系統提供了一個敲擊聲識別系統。使用者可以通過各種敲擊來控制物品和設備。例如,我們可以敲一張桌子控制開關一個電燈,敲擊書上開關一台電視。敲擊聲識別系統是基於一個有監督的學習方法。一個訓練樣本被用來構建一棵決策樹,該決策樹通過對聲音信號分類來識別敲擊類型。有監督學習方法的一個困難問題是,不能分類一個不屬於訓練集中任何類別的測試樣本。對於我們敲擊聲識別系統來說,我們不可能收集全各種各樣的聲音作為訓練,如說話聲、唱歌聲等。因此,我們提出基於距離的方法和基於概率的方法來區分敲擊聲和其他非敲擊聲。
Internet of Things (IoT) becomes very popular in recent years. IoT enables interaction between IoT devices, cloud server and users. The IoT devices range from small tags, sensors, smart phones to more complicated machines. Various small scale IoT applications are emerging in the market, which make our life easier and smarter. Those IoT applications usually consist of a set of IoT devices and an intelligent controller (usually a smart phone). The IoT devices are used to collect data from users or environment, while the intelligent controller is used as User Interface (UI) to interact with users. We propose a novel IoT system (called Intelligent Toy, or simply iToy) for smart phones. The iToy system consists of a smart phone, user-defined rules, sensors and devices to be controlled. Users input the rules to the iToy system, each of which has an operation and a set of conditions. According to the rules, the iToy system carries out an operation specified in a rule when the conditions in the rule are satisfied. The Intelligent Toy system can communicate with all kinds of Beacon types. Further we propose a knocking sound recognition system. Users can control things and devices through various kinds of knocking. For example, we can knock at a table to switch on a light and knock at a book to switch off TV. The knocking sound recognition system is based on a supervised learning approach. A training sample is used to construct a decision tree, and the decision tree is used to recognize knocking types from sound signals. A difficult problem for supervised learning approaches is to classify a test sample which does not belong to any class in the training sample. It is import to distinguish some sounds from knocking for our knocking recognition system because we cannot collect all kinds of sounds, such as speech, singing, and so on. We propose the distance-based and the probability-based approaches to distinguish knocking sounds and other sounds.
摘要 ii
ABSTRACT ii
誌謝 iii
Contents iv
List of Figures v
1. Introduction 1
1.1 Background 1
1.2 Motivation 1
1.3 Challenges 3
1.4 Research Aims 3
1.5 Thesis Organization 4
2. Related Works 5
3. iToy System 7
3.1 System Architecture 7
3.2 Application Examples of iToy System 16
3.3 Summery 20
4. Remote Control by Knocking 21
4.1 Data Collection and Pre-processing 23
4.2 Knocking Recognition 27
4.3 Distinguishing Knocking from Other Sounds 32
4.4 Knocking Patterns with Multiple Knocks 37
4.5 Performance Evaluation 39
5. Conclusions and Discussions 43
References 44
[1] Evans, D. (2011) The internet of things: how the next evolution of the internet is changing everything. CISCO white paper.
[2] Zheng, J., Shen, Y. and Zhang, Z. (2013) Emerging wearable medical devices towards personalized healthcare. International Conference on Body Area Networks. 427-431.
[3] Ahmad, S., Lu, R. and Zhang, Y. (2014) An empirical study of Smartphone based tracking devices and analysis of its demand & market. International Journal of Economics Commerce and Management, vol. II, issue 12, 1-13.
[4] Stern, J. (2015) Finding the best lost-item trackers: Tile, Track R and Duet Reviewed. The Wall Street Journal. [Online] Available:http://www.wsj.com/articles/finding-the-best-lost-item-trackers-tile-trackr-and-duet-reviewed-1403046981 [Accessed: Aug. 26, 2015].
[5] Onyx Beacon. [Online] Available: http://www.onyxbeacon.com/solutions/ [Accessed: Aug. 26, 2015]
[6] Levine, B. (2015) Smart Focus announces virtual beacons so retailers can draw in-store targeting. Venture Beat, 17 March 2015. [Online]. Available: http://venturebeat.com/2015/03/17/smartfocus-announces-virtual-beacons-so-retailers-can-draw-in-store-targeting/ [Accessed: Aug. 26, 2015].
[7] Ward, B. (2015) How the iPhone 6S could control your home. TechRadar, 18 August 2015. [Online]. Available:http://www.techradar.com/news/digital-home/how-the-iphone-6s-could-control-your-home-1302107 [Accessed: Aug. 26, 2015].
[8] Smart Things. [Online] Available: http://www.smartthings.com/how-it-works [Accessed: Aug. 26, 2015].
[9] LoxOne. [Online] Available: http://www.loxone.com/enen/smart-home/how-it-works.html [Accessed: Aug. 26, 2015].
[10] BluFi. [Online] Available: http://bluvision.com/blufi-wifi-sensor [Accessed: Aug. 26, 2015].
[11] Trakkies. “Trakkies. a multifunctional microcomputer for your things”, Kick Starter, [Online] Available: https://www.kickstarter.com/projects/trakkies/trakkies-proactively-helps-you-not-to-forget-your [Accessed: Aug. 26, 2015]
[12] McGrath, J. and Chokkattu, J. (2016) Knocki surpasses its Kick Starter goal in a little more than anhour.http://www.digitaltrends.com/home/the-knocki-controls-your-smart-home-with-knocks/#/3
[13] Jamie A. Ward, J. A., Troster, G. and Starner, T. E. (2006) Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Tranactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 10, 1553 – 1567.
[14] Witten, I. H., Frank, E. and Hall, M. A. (2005) Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.
[15] Quinlan, J. R. (1986) Induction of decision trees. Machine Learning, Vol. 1, No. 1, 81-106.
[16] Quinlan J. R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
[17] Jamain, A. and Hand, D. J. (2005) The naïve Bayes mystery: A statistical detective story. Pattern Recognition Letters. Vol. 26, 1752-1760.
[18] Breiman, L. (2001) Random forests. Machine Learning, Vol. 45, No. 1, 5-32.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔