跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李穎欣
研究生(外文):Lei, Weng-Ian
論文名稱:應用程式導向之SDN網路狀態模型化技術
論文名稱(外文):Application-Oriented Network States Extraction and Modeling for Software Defined Network
指導教授:吳育松
指導教授(外文):Wu, Yu-Sung
口試委員:許富皓馬尚彬黃俊穎
口試委員(外文):Hsu, Fu-HauMa, Shang-PinHuang, Chun-Ying
口試日期:2017-08-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:36
中文關鍵詞:軟體定義網路OpenFlow網路狀態模型化高可用性
外文關鍵詞:software definition networkOpenFlowmodelization of network statehigh availability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從網絡運營商的角度來看,網絡管理變得越來越困難,因為網絡中的每個組件都按照自己的演算法處理數據包。軟件定義網絡(SDN)把數據平面和控制平面分離,並使用軟件程序來控制整個網絡的行為,為網絡管理提供了新的可能性。憑藉其技術,管理大型的數據中心會更容易,因為網絡中的每個組件都根據控制器的指令處理數據包。但龐大的網絡結構會令網絡運營商難以在第一時間發現網絡中出現的問題,大多是依靠用戶回報。當網絡遭受一些惡意攻擊時,網絡運營商如果無法立即找到並解決該漏洞,將會蒙受重大損失。
在本文中,我們為執行網絡診斷和故障排除提供一個有更效的方法。我們的技術使得網絡運營商能夠通過用已訓練的機器學習模型分析一系列有時間性的網路拓撲來了解當前所控制的網絡狀態。此模型藉著調整訓練方向,可用於探查網絡上所運行的服務、檢測網絡是否出現異常狀態,從而發展出偵錯、備份、還原等多方面的應用。
From the perspective of network operators, network management is becoming much more difficult since every component in the network processes packets according to its own algorithm. A paradigm in networking, software defined network (SDN), advocates separating the data plane and the control plane and uses a logically centralized software program to control the behavior of the entire network. SDN introduces new possibilities for network management and configuration methods. With its technology, it is easier to manage a large data center since every component in the network processes packets according to the control plane’s instructions. It is difficult for network operators to find the problems in a large network at the first timing. They rely on the users' responding for the most part. When the network subjected to some malicious attacks, the network operator would suffer a significant loss if they cannot find and respond to the issue instantly.
In this article, we focus on providing better visibility for performing network diagnosis and troubleshooting. The technologies we describe enable network operators to know the state of the controlling network by analyzing a series of time-related network views with a trained machine learning model. With the adjustment of training direction, the model can be used to probe the service running on network or detect network abnormal state. Thus developing the debugging, backup, restore and many other functions.
Chapter 1. Introduction 1
Chapter 2. Background 3
2.1. SDN and OpenFlow 3
2.2. High Availability 4
2.3. Related Work 4
Chapter 3. System Description 6
3.1. Network View 7
3.1.1. Dynamic Network View 9
3.1.2. Simple Graph and Difference Graph 10
3.1.3. Feature Extraction of Graphs 14
3.2. Application Oriented Network State Extraction and Modeling 16
3.2.1. Application Detector 16
3.2.2. Service Suspension Detector 17
3.2.3. API Template Detector 17
3.3. API Integrator and Northbound API Generation 19
Chapter 4. Experiments 26
4.1. Experiment 1 – Effect of Training Data Size on Modeling Accuracy (Multiple Switches) 27
4.2. Experiment 2 – Effect of Training Data Size on Modeling Accuracy (Single Switch) 28
4.3. Experiment 3 – Compatibility of Detectors (From Multiple to Single) 29
4.4. Experiment 4 – Compatibility of Detectors (From Single to Multiple) 30
Chapter 5. Conclusion 34
Reference… 35
[1] SDN. Available: https://www.opennetworking.org/sdn-resources/sdn-definition
[2] Floodlight Project. Available: http://www.projectfloodlight.org/
[3] Ryu Project. Available: https://osrg.github.io/ryu/
[4] N. McKeown et al., ”OpenFlow: Enabling Innovation in Campus Networks,” ACM Comp. Commun. Rev., Apr. 2008.
[5] Kim, Hyojoon, and Nick Feamster. "Improving network management with software defined networking." IEEE Communications Magazine 51.2 (2013): 114-119.
[6] Chowdhury, Shihabur Rahman, et al. "Payless: A low cost network monitoring framework for software defined networks." Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014.
[7] Khurshid, Ahmed, et al. "Veriflow: Verifying network-wide invariants in real time." ACM SIGCOMM Computer Communication Review 42.4 (2012): 467-472.
[8] Lee, Seungsoo, et al. "DELTA: A security assessment framework for software-defined networks." Proceedings of NDSS. 2017.
[9] Kazemian, Peyman, et al. "Real Time Network Policy Checking Using Header Space Analysis." NSDI. 2013.
[10] Kazemian, Peyman, George Varghese, and Nick McKeown. "Header Space Analysis: Static Checking for Networks." NSDI. 2012.
[11] Dhawan, Mohan, et al. "SPHINX: Detecting Security Attacks in Software-Defined Networks." NDSS. 2015.
[12] Henderson, Keith, et al. "It's who you know: graph mining using recursive structural features." Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011.
[13] OpenFlow Specification. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
[14] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.
[15] Mininet. Available: http://mininet.org
[16] LIBSVM. Available: https://www.csie.ntu.edu.tw/~cjlin/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top