跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳勇旗
研究生(外文):Chen, Yung-Chi
論文名稱:基於電器使用模型之建築耗電預測
論文名稱(外文):Prediction of Home Energy Consumption based on Appliance State Transition Models
指導教授:曹孝櫟曹孝櫟引用關係
口試日期:2017-09-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:17
中文關鍵詞:需量預測電器識別
外文關鍵詞:energy forecastNILM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來在一個小範圍如家庭、大樓或社區等建築物耗能管理逐漸成為大家所關心的議題之一,其中如何預測未來的數分鐘至小時的時間的需量(Deamon)耗電來避免尖峰用電過載更是為重要的問題。在傳統的需量預測方法如類神經模型法等往往有時會因為負載耗電行為的劇烈變化造成學習不易甚至造成演算法發散,尤其在微電網中加入再生能源及不同的配電策略等原因可能會造成加入更多不確定的因素使預測精準度下降,為了彌補傳統預測方法的缺失本研究提出一基於非侵入式負載辨識技術(NILM)之需量預測系統,透過NILM技術我們可以利用單一電錶量判別出每一個電器的種類及使用狀態切換的時間,進而建立電器運轉模型用於預測未來某個時間點的能源需量。最後透過模擬實驗的分析本研究所提出的預測方法在一般在庭環境中準確率可達3至5%。
Nowadays, more and more people concern the energy and environmental issues and would like to manage the use of electric power from a small-scale area such as a house, a building, or community. One of the most important tasks is to forecast the power consumption in next several minutes and/or hours so that people may cooperatively use their appliances in an asynchronous manner to alleviate the peak power consumption of an area. Different from conventional large-scale power consumption forecast schemes which are mainly based on artificial intelligence methods such as artificial neural network, this paper proposes a new approach to predict the energy consumption of a house and building based on appliance state transition models which can be gathered from a nonintrusive load monitoring (NILM) meter. First, the appliance usage patterns of a house or a building are obtained from the NILM meter. Then, appliance state transition models can be established and they can be used to predict the energy consumption of a house or building efficiently. Simulation results indicate that only 3% to 5% prediction error is introduced for a typical house environment.
摘要 i
Abstract ii
I. Introduction 1
II. Related Work 3
III. Home Energy Prediction Method 6
III.1 Building an Appliance State Transfer Model 6
III.1.1 Average Appliance Operating Time 6
III.1.2 State Transition Probability 7
III.1.3 State Transition Model 7
III.1.4 Evaluating the Expected Energy Consumption 8
IV. Simulation and Experimental Results 11
Behavior Switch Pattern 14
Random Switch Pattern 14
V. Conclusion 16
References 17
[1] G. W. Hart, "Nonintrusive appliance load monitoring," in Proc. 1992 IEEE Conf, vol. 80, pp. 1870-1891.
[2] J. G. Roos, I. E. Lane, E. C. Botha, and G. P. Hanche,"Using Neural networks for non-intrusive monitoring of industrial electrical loads," in Proc. 1994 IEEE Instrumentation and Measurement Technology Conf., pp.1115-1118
[3] Amjady, N.; Keynia, F.; Zareipour, H.; , "Short-Term Load Forecast of Microgrids by a New Bilevel Prediction Strategy," Smart Grid, IEEE Transactions on , vol.1, no.3, pp.286-294, Dec. 2010
[4] Amjady, N.; Daraeepour, A.; , "Midterm Demand Prediction of Electrical Power Systems Using a New Hybrid Forecast Technique," Power Systems, IEEE Transactions on , vol.26, no.2, pp.755-765, May 2011
[5] Aggarwal, R. and Yonghua Song, “Artificial Neural Network in Power System. I. General introduction to neural computing” School of Elec;rmic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK. 1997
[6] Ying Chen; Luh, P.B.; Che Guan; Yige Zhao; Michel, L.D.; Coolbeth, M.A.; Friedland, P.B.; Rourke, S.J.; , "Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks," Power Systems, IEEE Transactions on , vol.25, no.1, pp.322-330, Feb. 2010.
[7] Hanmandlu, M.; Chauhan, B.K.; , "Load Forecasting Using Hybrid Models," Power Systems, IEEE Transactions on , vol.26, no.1, pp.20-29, Feb. 2011.
[8] Lihong Ma; Shugong Zhou; Ming Lin; , "Support Vector Machine Optimized with Genetic Algorithm for Short-Term Load Forecasting," Knowledge Acquisition and Modeling, 2008. KAM '08. International Symposium on , vol., no., pp.654-657, 21-22 Dec. 2008
[9] Yi-Sheng Lai, Yung-Chi Chen, Shiao-Li Tsao and Tzung-Cheng Tsai, “A Novel Search Scheme for Nonintrusive Load Monitoring Systems”, Industrial Technology (ICIT), 2012 IEEE International Conference
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top