跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓晉平
研究生(外文):Cho, Chin-Ping
論文名稱:以網路架構系統來視覺化果蠅神經、神經組、及神經氈結構
論文名稱(外文):A Web-based System For Visualizing Drosophila Neuron Tracing, Neuron Grouping, And Neuropils
指導教授:荊宇泰
口試委員:荊宇泰羅中泉王昱舜
口試日期:2017-6-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:61
中文關鍵詞:神經科學電腦視覺果蠅腦WebGL
外文關鍵詞:Neuronsciencecomputer graphicDrosophila brain researchWebGL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we build a web-based system for visualizing Drosophila's neuron, neuron groups, and neuropils. This system can help neuroscieance researchers know the relation between neuron and the behavior of Drosophila more directly. The data comes from a lot of states. First, researchers use X-ray to photograph the sinogram of Drosophila's brain. Then, use the technical of image reconstruction to build the 3D volume data. Thirdly, analyze the 3D data to recognize where the neurons are and build their geometry coordination. Professor Chiang's lab in NTHU has built 27K and 16K data in the database by using neuron tracking method. Finally, these neuron data can do the grouping by analyzing the similarity between each neuron's structure. In the previous work of our lab, we have built a database that contains about 2 thousand groups. The purposes of this visualizing system are: showing these neuron data clearly and efficiently, letting researchers operate and query the data conveniently, and building a security log-in system to protect the database. This system have gotten positive responses of neuroscience researchers.
In this thesis, we build a web-based system for visualizing Drosophila's neuron, neuron groups, and neuropils. This system can help neuroscieance researchers know the relation between neuron and the behavior of Drosophila more directly. The data comes from a lot of states. First, researchers use X-ray to photograph the sinogram of Drosophila's brain. Then, use the technical of image reconstruction to build the 3D volume data. Thirdly, analyze the 3D data to recognize where the neurons are and build their geometry coordination. Professor Chiang's lab in NTHU has built 27K and 16K data in the database by using neuron tracking method. Finally, these neuron data can do the grouping by analyzing the similarity between each neuron's structure. In the previous work of our lab, we have built a database that contains about 2 thousand groups. The purposes of this visualizing system are: showing these neuron data clearly and efficiently, letting researchers operate and query the data conveniently, and building a security log-in system to protect the database. This system have gotten positive responses of neuroscience researchers.
Chapter 1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2.Relative work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Fruit Fly Brain Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Amira and Avizo 3D Software . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Vaa3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3.System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 System introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Basic control page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Single neuron page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Groups custom page . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Neuropil page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Action recording section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Main scene operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Orbit camera controlling . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Neurons and groups visualizing . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Manipulate the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 4.Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Introduction of included modules . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Three.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Basic scene settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Scene rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Material setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Render order and the Depth test setting . . . . . . . . . . . . . . . . . 24
4.4.3 Lights setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Details of the main shell and the neuropil shell settings . . . . . . . . . . . . . 26
4.5.1 Introduction of alpha blending . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 The material settings of the shells . . . . . . . . . . . . . . . . . . . . 27
4.6 Render a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Line material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Enhancement line material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.1 Normal map rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.2 Group transparent rendering . . . . . . . . . . . . . . . . . . . . . . . 37
4.9 Point’s material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Ray casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Highlight the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Camera movement and focusing . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13 Statement record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.14 Screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.15 Server setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.15.1 Server’s structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.15.2 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15.3 Socket.IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chapter 5.Result and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.1 Finding neural tracking errors . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 The render result of neurons . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Database query to search soma points . . . . . . . . . . . . . . . . . . 53
5.1.4 Recording user log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
[1] H. Kang R. W. Draft J. Lu R. A. Bennis J. Livet, T. A. Weissman and J. R. Sanes. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. 2007.
[2] W. Toga. Brain warping. 1999.
[3] H. Protas S.C. Huang Leow, R. Thompson. Brain warping with implicit representations. In Biomedical Imaging: Nano to Macro, 2004, pages 603–606. IEEE, 2004.
[4] Chuang CC etc. Chiang AS, Lin CY. Three-dimensional reconstruction of brainwide wiring networks in drosophila at single cell resolutio. 2011.
[5] Chen CC& Wu JK& Lin HW. Visualizing long-term memory formation in two neurons of the drosophila brain. pages 335, 678–685. Science, 2012.
[6] Fruit fly brain observatory. http://fruitflybrain.org/.
[7] Thermo Fisher Scientific. Amira-avizo software. https://www.fei.com/software/ amira-avizo/.
[8] Allen Institute. Vaa3d. http://www.alleninstitute.org/what-we-do/brain-science/ research/products-tools/vaa3d/.
[9] three.js - javascript 3d library. https://threejs.org/.
[10] The Khronos™ Group Inc. Webgl overview. https://www.khronos.org/webgl/.
[11] J. Anthony Movshon Michael Landy. Computational modeling of visual texture segregation. In Computational Models of Visual Processing, pages 253–271. IEEE, 1991.
[12] Node.js. https://nodejs.org/en/about/.
[13] express. https://www.npmjs.com/package/express.
[14] Mongoose. http://mongoosejs.com/.
[15] Socket.io. https://www.npmjs.com/package/socket.io.
[16] Node.js file system module. https://www.w3schools.com/nodejs/nodejs_filesystem. asp.
[17] Passport.js. http://www.passportjs.org/.
[18] Node.js v10.5.0 documentation. https://nodejs.org/api/assert.html/.
[19] Node.js body parsing middleware. https://www.npmjs.com/package/body-parser/.
[20] Inc. MongoDB. Mongodb for giant ideas | mongodb. https://www.mongodb.com/.
[21] stats.js - javascript performance monitor. https://www.npmjs.com/package/stats-js/.
[22] dat.gui - workshop . chromeexperiments. https://workshop.chromeexperiments.com/ examples/gui/.
[23] James F. Blinn. Models of light reflection for computer synthesized pictures. In Proc. 4th annual conference on computer graphics and interactive techniques, pages 192–198. SIGGRAPH, 1977.
[24] Wolfgan Straßer. In computer graphics angewangte flöchen. In Schnelle Kurven - und Flächendarstellung auf grafischen Sichtgeräten, pages 3–5–3–12. Berlin, 1974.
[25] Naty Hoffman Tomas Akenine-Möller, Eric Haines. In Real-Time Rendering, Third Edition, pages 134–141,187–190. CRC Press, 2008.
[26] Three.js doc - material. https://threejs.org/docs/#api/materials/Material/.
[27] Three.js doc - splinecurve. https://threejs.org/docs/#api/extras/curves/ SplineCurve/.
[28] Changqing Zou ; Heng Yang ; Jianzhuang Liu. Separation of line drawings based on split faces for 3d object reconstruction. 2014.
[29] Scott D Roth. Ray casting for modeling solids. In Computer Graphics and Image Processing, pages 109–144. IEEE, 1982.
[30] Three.js doc - orbitcontrols. https://threejs.org/docs/#examples/controls/ OrbitControls/.
[31] David Mazières Niels Provos. A future-adaptable password scheme. 1999.
[32] Pavel Tomancak Volker Hartenstein Albert Cardona, Stefan Saalfeld. Drosophila brain development: Closing the gap between a macroarchitectural and microarchitectural approach. 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top