資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(18.97.9.170) 您好!臺灣時間:2025/01/13 15:11
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
論文連結
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
卓晉平
研究生(外文):
Cho, Chin-Ping
論文名稱:
以網路架構系統來視覺化果蠅神經、神經組、及神經氈結構
論文名稱(外文):
A Web-based System For Visualizing Drosophila Neuron Tracing, Neuron Grouping, And Neuropils
指導教授:
荊宇泰
口試委員:
荊宇泰
、
羅中泉
、
王昱舜
口試日期:
2017-6-15
學位類別:
碩士
校院名稱:
國立交通大學
系所名稱:
資訊科學與工程研究所
學門:
工程學門
學類:
電資工程學類
論文種類:
學術論文
論文出版年:
2018
畢業學年度:
106
語文別:
英文
論文頁數:
61
中文關鍵詞:
神經科學
、
電腦視覺
、
果蠅腦
、
WebGL
外文關鍵詞:
Neuronscience
、
computer graphic
、
Drosophila brain research
、
WebGL
相關次數:
被引用:0
點閱:238
評分:
下載:17
書目收藏:0
In this thesis, we build a web-based system for visualizing Drosophila's neuron, neuron groups, and neuropils. This system can help neuroscieance researchers know the relation between neuron and the behavior of Drosophila more directly. The data comes from a lot of states. First, researchers use X-ray to photograph the sinogram of Drosophila's brain. Then, use the technical of image reconstruction to build the 3D volume data. Thirdly, analyze the 3D data to recognize where the neurons are and build their geometry coordination. Professor Chiang's lab in NTHU has built 27K and 16K data in the database by using neuron tracking method. Finally, these neuron data can do the grouping by analyzing the similarity between each neuron's structure. In the previous work of our lab, we have built a database that contains about 2 thousand groups. The purposes of this visualizing system are: showing these neuron data clearly and efficiently, letting researchers operate and query the data conveniently, and building a security log-in system to protect the database. This system have gotten positive responses of neuroscience researchers.
In this thesis, we build a web-based system for visualizing Drosophila's neuron, neuron groups, and neuropils. This system can help neuroscieance researchers know the relation between neuron and the behavior of Drosophila more directly. The data comes from a lot of states. First, researchers use X-ray to photograph the sinogram of Drosophila's brain. Then, use the technical of image reconstruction to build the 3D volume data. Thirdly, analyze the 3D data to recognize where the neurons are and build their geometry coordination. Professor Chiang's lab in NTHU has built 27K and 16K data in the database by using neuron tracking method. Finally, these neuron data can do the grouping by analyzing the similarity between each neuron's structure. In the previous work of our lab, we have built a database that contains about 2 thousand groups. The purposes of this visualizing system are: showing these neuron data clearly and efficiently, letting researchers operate and query the data conveniently, and building a security log-in system to protect the database. This system have gotten positive responses of neuroscience researchers.
Chapter 1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2.Relative work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Fruit Fly Brain Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Amira and Avizo 3D Software . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Vaa3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3.System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 System introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Basic control page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Single neuron page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Groups custom page . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Neuropil page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Action recording section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Main scene operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Orbit camera controlling . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Neurons and groups visualizing . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Manipulate the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 4.Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Introduction of included modules . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Three.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Basic scene settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Scene rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Material setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Render order and the Depth test setting . . . . . . . . . . . . . . . . . 24
4.4.3 Lights setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Details of the main shell and the neuropil shell settings . . . . . . . . . . . . . 26
4.5.1 Introduction of alpha blending . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 The material settings of the shells . . . . . . . . . . . . . . . . . . . . 27
4.6 Render a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Line material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Enhancement line material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.1 Normal map rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.2 Group transparent rendering . . . . . . . . . . . . . . . . . . . . . . . 37
4.9 Point’s material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Ray casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Highlight the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Camera movement and focusing . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13 Statement record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.14 Screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.15 Server setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.15.1 Server’s structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.15.2 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15.3 Socket.IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chapter 5.Result and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.1 Finding neural tracking errors . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 The render result of neurons . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Database query to search soma points . . . . . . . . . . . . . . . . . . 53
5.1.4 Recording user log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
[1] H. Kang R. W. Draft J. Lu R. A. Bennis J. Livet, T. A. Weissman and J. R. Sanes. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. 2007.
[2] W. Toga. Brain warping. 1999.
[3] H. Protas S.C. Huang Leow, R. Thompson. Brain warping with implicit representations. In Biomedical Imaging: Nano to Macro, 2004, pages 603–606. IEEE, 2004.
[4] Chuang CC etc. Chiang AS, Lin CY. Three-dimensional reconstruction of brainwide wiring networks in drosophila at single cell resolutio. 2011.
[5] Chen CC& Wu JK& Lin HW. Visualizing long-term memory formation in two neurons of the drosophila brain. pages 335, 678–685. Science, 2012.
[6] Fruit fly brain observatory. http://fruitflybrain.org/.
[7] Thermo Fisher Scientific. Amira-avizo software. https://www.fei.com/software/ amira-avizo/.
[8] Allen Institute. Vaa3d. http://www.alleninstitute.org/what-we-do/brain-science/ research/products-tools/vaa3d/.
[9] three.js - javascript 3d library. https://threejs.org/.
[10] The Khronos™ Group Inc. Webgl overview. https://www.khronos.org/webgl/.
[11] J. Anthony Movshon Michael Landy. Computational modeling of visual texture segregation. In Computational Models of Visual Processing, pages 253–271. IEEE, 1991.
[12] Node.js. https://nodejs.org/en/about/.
[13] express. https://www.npmjs.com/package/express.
[14] Mongoose. http://mongoosejs.com/.
[15] Socket.io. https://www.npmjs.com/package/socket.io.
[16] Node.js file system module. https://www.w3schools.com/nodejs/nodejs_filesystem. asp.
[17] Passport.js. http://www.passportjs.org/.
[18] Node.js v10.5.0 documentation. https://nodejs.org/api/assert.html/.
[19] Node.js body parsing middleware. https://www.npmjs.com/package/body-parser/.
[20] Inc. MongoDB. Mongodb for giant ideas | mongodb. https://www.mongodb.com/.
[21] stats.js - javascript performance monitor. https://www.npmjs.com/package/stats-js/.
[22] dat.gui - workshop . chromeexperiments. https://workshop.chromeexperiments.com/ examples/gui/.
[23] James F. Blinn. Models of light reflection for computer synthesized pictures. In Proc. 4th annual conference on computer graphics and interactive techniques, pages 192–198. SIGGRAPH, 1977.
[24] Wolfgan Straßer. In computer graphics angewangte flöchen. In Schnelle Kurven - und Flächendarstellung auf grafischen Sichtgeräten, pages 3–5–3–12. Berlin, 1974.
[25] Naty Hoffman Tomas Akenine-Möller, Eric Haines. In Real-Time Rendering, Third Edition, pages 134–141,187–190. CRC Press, 2008.
[26] Three.js doc - material. https://threejs.org/docs/#api/materials/Material/.
[27] Three.js doc - splinecurve. https://threejs.org/docs/#api/extras/curves/ SplineCurve/.
[28] Changqing Zou ; Heng Yang ; Jianzhuang Liu. Separation of line drawings based on split faces for 3d object reconstruction. 2014.
[29] Scott D Roth. Ray casting for modeling solids. In Computer Graphics and Image Processing, pages 109–144. IEEE, 1982.
[30] Three.js doc - orbitcontrols. https://threejs.org/docs/#examples/controls/ OrbitControls/.
[31] David Mazières Niels Provos. A future-adaptable password scheme. 1999.
[32] Pavel Tomancak Volker Hartenstein Albert Cardona, Stefan Saalfeld. Drosophila brain development: Closing the gap between a macroarchitectural and microarchitectural approach. 2009.
電子全文
國圖紙本論文
連結至畢業學校之論文網頁
點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
基於深度學習目標檢測之羽球影片空間定位及球員位置預測
2.
基於三軸加速度計與陀螺儀之長時間健身房動作分析
3.
基於長時間穿戴感測器之健身房身分識別
4.
肺部電腦斷層間隙、血管與結節之三維形態學強化與分析
5.
基於空間相似度的果蠅神經分群
6.
生物與生醫問題之研究 - 以機器學習方法解決
7.
使用多感測器系統實作手指顫抖分析並應用於神經退化疾病
8.
多感測器系統與即時性動作辨識
9.
使用三軸加速度計與陀螺儀之異常步態偵測方法
10.
基於三軸加速度與陀螺儀之手寫簽名驗證系統
11.
一個新的步態分析方法及其應用
12.
針對亞洲消費者設計的美妝保養品推薦與經驗收集系統
13.
結合動態對比顯影與擴散磁振影像特徵分析於自動化乳房腫瘤劃分之研究
14.
以生成對抗網路內插稀疏正弦圖及斷層影像重建
15.
一種基於語意一致性的對抗網路應用於脊椎影像模態轉換
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室