|
[1] Z.Bouzidi, L.Terrissa, A.Lahmadi, N.Zerhouni, S.Ayad, "Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines", 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT) on, 5-7 April 2017. [2] F.Yang, M. Habibullah, T.Zhang, Z.Xu, P.Lim, S.Nadarajan,"Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines", IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2633 – 2644, April 2016. [3] C.Zhang, G.S.Hong, H.Xu, K.C.Tan, J.H.Zhou, H.L.Chan, H.Li, "A data-driven prognostics framework for tool remaining useful life estimation in tool condition monitoring", Emerging Technologies and Factory Automation (ETFA), 2017 22nd IEEE International Conference on, 12-15 Sept. 2017. [4] S.Laddada, T.Benkedjouh, M.O.Si-Chaib, R.Drai, "A data-driven prognostic approach based on wavelet transform and extreme learning machine", IEEE Electrical Engineering Boumerdes, 2017 5th International Conference on, 29-31 Oct .2017. [5] N.Gugulothu, V.TV, P.Malhotra, L.Vig, P.Agarwal, G.Shroff, "Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks", 2nd ACM SIGKDD Workshop on ML for PHM, arXiv preprint arXiv:1709.01073 (2017). [6] J. Deutsch, D. He, "Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 48, no. 1, pp. 11 – 20, Jan. 2018.
|