(3.235.25.169) 您好!臺灣時間:2021/04/20 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳姵妤
研究生(外文):Chen, Pei-Yu
論文名稱:低功耗與低成本之二維對稱式濾波器架構設計實現
論文名稱(外文):Power-Efficient and Cost-Effective 2-D Symmetry Filter Architectures
指導教授:范倫達Hari C. Reddy
指導教授(外文):Van, Lan-DaReddy, Hari C.
口試委員:范倫達Hari C. Reddy周懷樸陳紹基陳添福郭峻因許騰尹徐慰中吳安宇
口試委員(外文):Van, Lan-DaReddy, Hari C.Chou, Hwai-PwuChen, Sau-GeeChen, Tien-FuGuo, Jiun-InHsu, Terng-YinHsu, Wei-ChungWu, An-Yeu
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:95
中文關鍵詞:對稱式濾波器
外文關鍵詞:symmetry filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文中我們提出低功耗、低面積之二維對稱型IIR濾波器。此論文包含Type-1、Type-2與Type-3 對角線對稱(diagonal symmetry)、四次旋轉對稱(fourfold rotational symmetry)、象限對稱(quadrantal symmetry)、八角形對稱(octagonal symmetry)之二維對稱型濾波器,Type-1、Type-3低功耗低成本之多組態二維對稱型濾波器,此兩種多組態二維對稱型濾波器可實現上述四種對稱型模式。此外我們還提出了應用德耳塔運算子在各種對稱式濾波器之架構,可更進一步在窄頻段濾波器得到更好的數值精密度並降低係數靈敏度。多組態二維對稱型濾波器,則可同時支援四種對稱型,達到面積最佳化的效果。其中Type-1四種對稱型與多組態濾波器皆經由Design Compiler與SOC Encounter完成TSMC180nm之晶片設計,並利用Prime Time完成功耗模擬。模擬結果顯示Type-1 對角線對稱、四次旋轉對稱、象限對稱、八角形對稱之二維對稱型濾波器與傳統無對稱型之濾波器相較下各節省16.77%、 36.30%、 22.90%與37.73% 的功耗;另一方面, Type-1多組態二維對稱型濾波器在各個對稱組態則各自節省11.01%、31.42%、17.53%與35.26%的功耗。Type-1多組態二維對稱型濾波器與Type-1獨立四種對稱型濾波器的面積總和比較起來減少了63.25%的面積,相較於傳統無對稱型之濾波器面積也減少了16.02%。
In this dissertation, two-dimensional (2-D) VLSI digital filter architectures possessing various symmetries in the filter magnitude response are studied for the first time. For this purpose, Type-1, Type-2, and Type-3 power-efficient and cost-effective 2-D magnitude symmetry filter architectures possessing diagonal, four-fold rotational, quadrantal, and octagonal symmetries with reduced number of multipliers are given. For each Type (1-3), four structures incorporating each of the above symmetries are presented. In all 12 single symmetry structures are studied. Further, two power-efficient and cost-effective multimode 2-D symmetry filters are given. By combining the identities of four each of the Type-1 and Type-3 symmetry filter structures, the proposed Type-1 and Type-3 multimode 2-D symmetry filters can provide four different operation modes: diagonal symmetry mode (DSM), four-fold rotational symmetry mode (FRSM), quadrantal symmetry mode (QSM), and octagonal symmetry mode (OSM). Besides, the symmetry filter architectures using delta operator are also proposed for better numerical accuracy and lower coefficient sensitivity in narrow-band filter designs. According to ASIC implementation flow, Synopsys Design Compiler is employed to synthesize the Type-1 2-D filter designs in RTL level and Cadence SOC Encounter is adopted for placement and routing (P&R) in TSMC 0.18um. The power dissipation implementation result is measured via Synopsys PrimePower.
The Type-1 diagonal, four-fold rotational, quadrantal, and octagonal symmetry filter structures can attain power savings of 16.77%, 36.30%, 22.90%, and 37.73% with respect to that of the conventional 2-D filter design without symmetry. On the other hand, the Type-1 DSM, FRSM, QSM, and OSM modes can reduce power consumption by 11.01%, 31.42%, 17.53%, and 35.26% compared with that of the conventional 2-D filter design. The Type-1 multimode filter can result in 63.25% area reduction compared with the sum of the areas of the four individual Type-1 symmetry filter structures. Besides, we also provide Type-2 and Type-3 symmetry filter architectures with different structures and shorter critical paths.
摘 要 I
ABSTRACT II
CONTENTS VI
LIST OF TABLES VII
LIST OF FIGURES VIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Dissertation Contribution 3
1.3 Dissertation Organization 4

Chapter 2 Review of 2-D Filter Architectures and 2-D Magnitude Response with Symmetry 6
2.1 Review of 2-D Filter Architectures 6
2.2 Symmetry in Filter Magnitude Response 12

Chapter 3 2-D Separable Denominator Filter Architectures 19
3.1 Need for Separable Denominator Filter Transfer Function 19
3.2 Type-1 Separable Denominator Filter Architecture 20
3.3 Type-2 Separable Denominator Filter Architecture 24
3.4 Type-3 Separable Denominator Filter Architecture 27

Chapter 4 2-D Symmetry Filter Architectures 29
4.1 Overview of 2-D Polynomial Symmetry 29
4.2 Study of 2-D Symmetry Filter Architectures 30
4.2.1 Diagonal Symmetry Filter Structure 30
4.2.2 Fourfold-rotational Symmetry Filter Structure 34
4.2.3 Quadrantal Symmetry Filter Structure 38
4.2.4 Octagonal Symmetry Filter Structure 42
4.3 Error Analysis of Filter Structures with Symmetry 47
4.3.1 Error Analysis of Type-1 Symmetry Filter Structure 47
4.3.2 Error Analysis of Type-3 Symmetry Filter Structure 53

Chapter 5 Multimode 2-D Symmetry Filter Architectures 62
5.1 Type-1 Multimode Symmetry Filter Structures 62
5.2 Type-3 Multimode Symmetry Filter Structures 72

Chapter 6 2-D Symmetry Filter Architectures Using Delta Operator 75
6.1 Background Material for Delta Operator based Filter Transfer Functions with Symmetry 75
6.2 Diagonal Symmetry Filter Architecture using Delta Operator 78
6.3 Quadrantal Symmetry Filter Architecture using Delta Operator 80

Chapter 7 Comparison of Performance and Implementation Results 84
7.1 Filter Architecture Implementation 84
7.2 Performance Comparison 86
Chapter 8 Conclusion and Future Work 90
[1] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989, chapters 2 and 6.
[3] Wu-Sheng Lu and Andreas Antoniou, Two-Dimensional Digital Filters. Marcel Dekker, Inc. New York, NY, USA, 1992, chapter 11.
[4] P.P. Vaidyanathan, Multirate Systems and Filter Banks. NJ: Prentice Hall, 1993, pp. 859-863
[5] A. M. Tekalp, Digital Video Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995, chapter 14.
[6] M. A. Sid-Ahmed, Image Processing: Theory, Algorithms, and Architectures. NY: McGraw-Hill, 1995.
[7] M. Petrou and P. Bosdogianni, Image Processing, NY: Wiley, 2000.
[8] M. N. S. Swamy and P. K. Rajan, “Symmetry in 2-D filters and its application,” in Multidimensional Systems: Techniques and Applications (S.G. Tzafestas, Ed.). New York: Marcel Dekkar, 1986, Ch.9.
[9] H. C. Reddy, P.K. Rajan, G. S. Moschytz, and A. R. Stubberud. “Study of various symmetries in the frequency response of two-dimensional delta operator formulated discrete-time Systems,” in Proc. IEEE ISCAS, May 1996, vol. 2, pp. 344-347.
[10] H. C. Reddy, I. H. Khoo, G. S. Moschytz and A. R. Stubberud, “Theory and test procedure for symmetries in the frequency response of complex two-dimensional delta operator formulated discrete-time systems,” in Proc. IEEE ISCAS, Jun. 1997, vol. 4, pp. 2373-6.
[11] I. H. Khoo, H. C. Reddy, P. K. Rajan, “Delta operator based 2-D filter design using symmetry constraints,” in Proc. IEEE ISCAS, May 2001, vol. 2, pp. 781-784.
[12] H. C. Reddy, I. H. Khoo and P. K. Rajan, “2-D symmetry: theory and filter design applications,” IEEE Circuits and Systems Magazine, vol. 3, pp. 4-33, 2003.
[13] I. H. Khoo, H. C. Reddy, and P. K. Rajan, “Symmetry study for delta-operator-based 2-D digital filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9, pp. 2036-2047, Sep. 2006.
[14] H. C. Reddy, I. H. Khoo, P. K. Rajan, Application of Symmetry: 2-D Polynomials, Fourier Transform, and Filter Design, The Circuits and Filters Handbook 3rd Ed. (W. K. Chen, Editor). Boca Raton, FL: CRC Press, 2009.
[15] I. H. Khoo, H. C. Reddy, P. K. Rajan, ”Unified theory of symmetry for two-dimensional complex polynomials using delta discrete-time operator,” Multidimensional Systems and Signal Processing, 22, pp. 147-172, 2011.
[16] H.K. Kwan, “New realizations of first-order two-dimensional all-pass and all-pole digital filters,” Electron. Lett., vol. 24, pp. 224-226, 1988.
[17] M. A. Sid-Ahmed, “A systolic realization for 2-D digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-37, pp. 560-565, Apr. 1989.
[18] N. R. Shanbhag, “An improved systolic architecture for 2-D digital filters,” IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1195-1202, May 1991.
[19] F.G. Lorca, L. Kessal, and D. Demigny, “Efficient ASIC and FPGA implementations of IIR filters for real time edge detection,” in Proc. Image Processing(ICIP), vol. 2, USA, Oct. 1997.
[20] L. D. Van, ”A new 2-D systolic digital filter architecture without global broadcast,” IEEE Trans. VLSI Syst., vol. 10, no. 4, pp. 477-486, Aug. 2002
[21] H. L. P. A. Madanayake and L. T. Bruton, “A speed-optimized systolic array processor architecture for spatio-temporal 2-D IIR broadband beam filter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1953-1966, Aug. 2008.
[22] H. L. P. A. Madanayake, S. V. Hum, and L. T. Bruton, “A systolic array 2-D IIR broadband RF beamformer,” in IEEE Trans. Circuits Syst. II: Express Briefs, vol. 55, no. 12, pp. 1244-1248, Dec. 2008.
[23] A. Madanayake, C. Wijenayake, D.G. Dansereau, T.K. Gunaratne, L.T. Bruton, and S.B. Williams, "Multidimensional (MD) circuits and systems for emerging applications including cognitive radio, radio astronomy, robot vision and imaging", IEEE Circuits and Systems Magazine, vol. 13, no. 1, pp. 10-43, 2013
[24] P. Y. Chen, L. D. Van, H. C. Reddy and C.T. Lin, “A new VLSI 2-D diagonal-symmetry filter architecture design,” in Proc. IEEE APCCAS, Macao, China, Nov. 2008, pp. 320-323.
[25] P. Y. Chen, L. D. Van, H. C. Reddy and C.T. Lin, “A new VLSI 2-D fourfold-rotational-symmetry filter architecture design,” in Proc. IEEE ISCAS, Taiwan, May, 2009, pp. 93-96.
[26] I. H. Khoo, H. C. Reddy, L. D. Van and C.T. Lin, “2-D digital filter architectures without global broadcast and some symmetry applications,” in Proc. IEEE ISCAS, Taiwan, May, 2009, pp. 952-955.
[27] P. Y. Chen, L. D. Van, I. H. Khoo, H. C. Reddy and C. T. Lin, “Power-Efficient and Cost-Effective 2-D Symmetry Filter Architectures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 112-125, Jan. 2011.
[28] P. Y. Chen, L. D. Van, H. C. Reddy, and I. H. Khoo, “Area-efficient 2-D digital filter architectures possessing diagonal and four-fold rotational symmetries,” in Proc. International Conference on Information, Communications and Signal Processing (ICICS), Taiwan, Dec., 2013.
[29] I. H. Khoo, H. C. Reddy, L. D. , Van, and C. T. Lin, ”General formulation of shift and delta operator based 2-D VLSI filter structures without global broadcast and incorporation of the symmetry,” Multidimensional Systems and Signal Processing, 25, pp. 795-828, 2014.
[30] P. Y. Chen, L. D. Van, H. C. Reddy, and I. H. Khoo, “New 2-D filter architectures with quadrantal symmetry and octagonal symmetry and their error analysis,” in Proc. International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, USA, Aug., 2017.
[31] P. Y. Chen, L. D. Van, H. C. Reddy, and I. H. Khoo, "New 2-D quadrantal- and diagonal-symmetry filter architectures using delta operator," in Proc. IEEE International Conference on ASIC (ASICON), pp.1133-1136,Oct. 2017, Guiyang, China.
[32] P. Y. Chen, L. D. Van, H. C. Reddy, and I. H. Khoo, "Type-3 2-D multimode IIR filter architecture and the corresponding symmetry filter's error analysis," in Proc. IEEE International Conference on ASIC (ASICON), pp.265-268,Oct. 2017, Guiyang, China.
[33] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuit and Systems Perspective, Addison Wesley, 2005, Ch. 10.
[34] C-S. Bouganis, S-B Park, G. A. Constantinides, and Peter Y.K. Cheung, " Synthesis and Optimization of 2D Filter Designs for Heterogeneous FPGAs," ACM Transactions on Reconfigurable Technology and Systems (TRETS) TRETS Homepage archive, vol. 1, no. 24, 2009.
[35] Rimesh M. Joshi, Arjuna Madanayake, Jithra Adikari and Len T. Bruton, "Synthesis and Array Processor Realization of a 2-D IIR Beam Filter for Wireless Applications," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, Issue 12, pp. 2241-2254, Dec. 2012.
[36] Matsuo, K., and K. Heki (2011), "Coseismic gravity changes of the 2011 Tohoku‐Oki earthquake from satellite gravimetry, Geophys," Geophysical Research Letters, 38, April. 2011
電子全文 電子全文(網際網路公開日期:20231029)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔