(3.232.129.123) 您好!臺灣時間:2021/03/06 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林羣洲
研究生(外文):Lin, Chun-Chou
論文名稱:應用表面電漿調控螢光生命週期及螢光各向異性之生醫感測器研究
論文名稱(外文):Development of localized surface plasmon resonance-mediated fluorescence lifetime and fluorescence anisotropy biosensor
指導教授:陳怡君陳怡君引用關係
指導教授(外文):Chen, Yi-Chun
口試委員:陳怡君曾盛豪張宜仁
口試委員(外文):Chen, Yi-ChunTseng, Sheng-HaoChang, Yi-Ren
口試日期:2017-08-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:46
中文關鍵詞:表面電漿共振螢光生命週期螢光各向異性生醫感測器
外文關鍵詞:Localized surface plasmon resonanceFluorescence lifetimeFluorescence anisotropyBiosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討表面電漿共振現象對於螢光生命週期以及螢光各向異性之調變,以及未來應用於生醫感測器之方法。螢光生命週期與螢光各向異性訊號具有定性以及定量的分子資訊;相較於螢光光強訊號,更適合應用於臨床應用以及活體量測時的複雜系統。表面電漿共振現象對於螢光訊號之調變,將有利於螢光訊號分析。本研究中使用螢光標定之去氧核醣核酸,進行金奈米粒子之自組裝製程。藉由直徑為二十奈米之金奈米粒子所產生的局域性表面電漿共振現象,同時,利用去氧核醣核酸長度,決定螢光分子與金奈米球之間的距離,以控制螢光分子之螢光生命週期。另一方面,生醫感測器必須具有微型化、可攜式之特點。因此,研究中螢光訊號之量測使用發光二極體作為光源,而樣品產生之螢光則分別由增強型電荷耦合器、與光電倍增管的架構偵測。實驗結果中,驗證螢光分子確實受到局域性表面電漿共振的影響;當螢光分子與金奈米粒子兩者之間距離越近時,螢光分子產生光強變弱以及螢光生命週期變短的現象,證明螢光生命週期能夠藉由控制螢光分子和金奈米粒子之間的距離以進行調變。最後,實驗中驗證螢光生命週期之變化,亦影響螢光各向異性訊號。本論文的研究成果提供生醫檢測時之分子量測的發展方向。
In this thesis, I investigated the modulation of fluorescence lifetime and anisotropy by localized surface plasmon resonance (LSPR), with the goal for biosensor applications. Fluorescence lifetime and anisotropy provide qualitative and quantitative information on molecular states. Compared with fluorescence intensity, fluorescence lifetime and anisotropy are better for clinical application and in vivo measurements of complex bio-system. I utilized deoxyribonucleic acid (DNA) with Alexa 532 labelling, and then fabricated DNA-directed self-assembly of gold nanoparticle. Gold nanoparticles of 20 nm in diameter was chosen to make LSPR device. DNA was employed to exactly control the distance between dye molecule and gold nanoparticle, in order to control fluorescence lifetimes of Alexa 532. To realize biosensor with miniaturized size and portability, light emitting diode (LED) was used as the light source to excite the fluorescent specimen. In my experiments, fluorescence lifetime and anisotropy signals were detected by intensified charge-coupled device (ICCD) and photomultiplier (PMT), respectively.
The results in this thesis demonstrated that fluorescence signals were clearly affected by LSPR. As the distance between the flourophore and gold nanoparticle decreased, the fluorescence intensity became quenched and lifetime was decreased. This phenomenon showed that fluorescence lifetime of dye molecule was controllable, simply by changing the distance between dye molecule and gold nanoparticle. I also demonstrated that fluorescence anisotropy was tunable by changing fluorescence lifetime of fluorophore. The results of this thesis provides a method to design biosensor for molecule detection.
摘要 I
ABSTRCT II
誌謝 III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Surface plasmon resonance 1
1.1.1 SPR and LSPR 1
1.1.2 Influence of metal to fluorescent dye 3
1.1.3 Mechanism of fluorescence enhancement and quenching 6
1.2 Motivation and objective 8
Chapter 2 Materials and methods 10
2.1 Frequency-domain fluorescence lifetime technique 10
2.2 Polar plot analysis 14
2.3 Fluorescence anisotropy 15
2.4 Frequency-domain homodyne system 16
2.5 A system for fluorescence anisotropy 18
2.6 DNA-directed self-assembled gold nanoparticle 20
2.6.1 Specimen design 20
2.6.2 Specimen preparation 22

Chapter 3 Experiment and results 23
3.1 Verification of system 23
3.2 Results of fluorescence lifetime measurement 25
3.2.1 Results of blue light measurement 25
3.2.2 Results of green light measurement 28
3.3 Results of fluorescence intensity measurement 31
3.3.1 Results of blue light measurement 31
3.3.2 Results of green light measurement 33
3.4 Results of fluorescence anisotropy measurement 35
Chapter 4 Discussion 37
4.1 Fluorescence lifetime 37
4.2 Fluorescence intensity 37
4.3 Fluorescence anisotropy 38
Chapter 5 Conclusions 41
References 43
[1] Wikipedia, the free encyclopedia : Surface plasmon resonance
https://en.wikipedia.org/wiki/Surface_plasmon_resonance
[2] J Cao, E K Galbraith, T Sun1 and K T V Grattan, "Comparison of Surface Plasmon Resonance and Localized Surface Plasmon Resonance-based optical fibre sensors," Journal of Physics: Conference Series, vol 307, no. 1, 2010.
[3] Chanda Yonzon and Richard P. Van Duyne, "Localized and Propagating Surface Plasmon Resonance Sensors: A Study Using Carbohydrate Binding Protein," Materials Research Society, vol. 876, R7.3, 2005.
[4] Chanda Ranjit Yonzon, Eunhee Jeoung, Shengli Zou, George C. Schatz, Milan Mrksich, and Richard P. Van Duyne, "A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors:  The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer," Journal of the American Chemical Society, vol. 126, pp 12669-12676, 2004.
[5] Jacqueline Jatschka, André Dathe, Andrea Csáki, Wolfgang Fritzsche, Ondrej Stranik, " Propagating and localized surface plasmon resonance sensing-A critical comparison based on measurements and theory," Sensing and Bio-Sensing Research, vol. 7, pp. 62-70, 2016.
[6] 邱國斌、蔡定平, " 金屬表面電漿簡介," 物理雙月刊, 廿八卷二期, pp. 472-485,2006.
[7] Manas Ranjan Gartia1, John P. Eichorst, Robert M. Clegg, and G. Logan Liu, " Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface," Applied Physics Letters, vol. 101, 023118, 2012.
[8] Andreas W. Schell, Philip Engel, Julia F. M. Werra, Christian Wolff, Kurt Busch, and Oliver Benson, "Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States," Nano Letters, vol. 14, pp. 2623-2627, 2014.
[9] Rahul Chhabra, Jaswinder Sharma, Haining Wang, Shengli Zou, Su Lin, Hao Yan, Stuart Lindsay and Yan Liu1, "Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers," Nanotechnology, vol 20, no. 48 2009.
[10] J. Seelig, K. Leslie, A. Renn, S. Kühn , V. Jacobsen , M. van de Corput, C. Wyman , and V. Sandoghdar, "Nanoparticle-Induced Fluorescence Lifetime Modification as Nanoscopic Ruler:  Demonstration at the Single Molecule Level," Nano Letters, vol. 7, pp. 685-689, 2007.

[11] T. L. Jennings , M. P. Singh , and G. F. Strouse, "Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles:  Probing NSET Validity," Journal of the American Chemical Society, vol. 128, pp. 5462-5467, 2006.
[12] Jia Li, Alexey V. Krasavin, Linden Webster, Paulina Segovia, Anatoly V. Zayats & David Richards, "Spectral variation of fluorescence lifetime near single metal nanoparticles," Scientific Reports, vol. 6, no. 21349, 2016.
[13] Keiko Munechika, Yeechi Chen, Andreas F. Tillack, Abhishek P. Kulkarni, Ilan Jen-La Plante, Andrea M. Munro and David S. Ginger, "Spectral Control of Plasmonic Emission Enhancement from Quantum Dots near Single Silver Nanoprisms," Nano Letters, vol. 10, pp. 2598-2603, 2010.
[14] Pascal Anger, Palash Bharadwaj, and Lukas Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Physical Review Letters, vol. 96, 113002, 2006.
[15] Sergei Kühn, Ulf Håkanson, Lavinia Rogobete, and Vahid Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Physical Review Letters, vol. 97, 017402, 2006.
[16] Yeechi Chen , Keiko Munechika , and David S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Letters, vol. 7, pp 690-696, 2007.
[17] Maria Olejnik, Łukasz Bujak and Sebastian Mackowski, "Plasmonic Molecular Nanohybrids-Spectral Dependence of Fluorescence Quenching," International Journal of Molecular Sciences, vol. 13, pp. 1018-1028, 2012.
[18] Yu Teng, KoseiUeno, Xu Shi, Daisuke Aoyo, Jianrong Qiu, and Hiroaki Misawa, "Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures," Annalen der Physik, vol. 524, pp. 733-740, 2012.
[19] Daniel Darvill, Anthony Centeno and Fang Xie, "Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology," Physical Chemistry Chemical Physics, vol. 15, pp. 15709-15726 2013.
[20] Saji Thomas Kochuveedu and Dong Ha Kim, "Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems," Nanoscale, vol. 6, pp. 4966-4984, 2014.
[21] Mazher-Iqbal Mohammed and Marc P. Y. Desmulliez, "Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review," TUTORIAL REVIEW, vol. 11, pp. 569-595, 2010.
[22] macbeath lab :
http://macbeath.hms.harvard.edu/research/lysate_ma.html
[23] James R. Collett, Eun Jeong Cho, Andrew D. Ellington, "Production and processing of aptamer microarrays," Methods, vol. 37, pp. 4-15, 2005.

[24] T. Mizuno, Y. Mizutani, and T. Iwata, "Phase-modulation fluorometer using a phase-modulated excitation light source," Optical review, vol. 19, pp. 222-227, 2012.
[25] A. Squire, P. J. Verveer, and P. Bastiaens, "Multiple frequency fluorescence lifetime imaging microscopy," Journal of Microscopy, vol. 197, pp. 136-149, 2000.
[26] M. Zhao, Y. Li, and L. Peng, "Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging," Optics express, vol. 22, pp. 10221-10232, 2014.
[27] M. Zhao, Y. Li, and L. Peng, "FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging," Optics express, vol. 22, pp. 23073-23085, 2014.
[28] N. Niu, J. Zhang, T. Huang, Y. Sun, Z. Chen, W. Yi, et al., "IgG expression in human colorectal cancer and its relationship to cancer cell behaviors," PloS one, vol. 7, p. e47362, 2012.
[29] J. Wang, D. Lin, H. Peng, Y. Huang, J. Huang, and J. Gu, "Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species," Cell death & disease, vol. 4, p. e945, 2013.
[30] K. Ahrer, A. Buchacher, G. Iberer, D. Josic, and A. Jungbauer, "Analysis of aggregates of human immunoglobulin G using size-exclusion chromatography, static and dynamic light scattering," Journal of Chromatography A, vol. 1009, pp. 89-96, 2003.
[31] L. F. Pease, J. T. Elliott, D. H. Tsai, M. R. Zachariah, and M. J. Tarlov, "Determination of protein aggregation with differential mobility analysis: application to IgG antibody," Biotechnology and bioengineering, vol. 101, pp. 1214-1222, 2008.
[32] Peter C. Schneider and Robert M. Clegg, "Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications," Review of Scientific Instruments, vol. 68, pp. 4107-4119, 1997.
[33] Glen I. Redford and Robert M. Clegg, "Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes," Journal of Fluorescence, vol. 15, pp. 805-815, 2005.
[34] 馮雅蘭, "應用螢光各向異性檢測蛋白質聚集狀態之研究," 國立交通大學光電系統研究所學位論文, pp. 1-80, 2016.
[35] Text book, Molecular Fluorescence: Principles and Applications, chapter 5 & 6, pp. 125-.199.
[36] Terutake Hayashi, Yuki Ishizaki, Masaki Michihata, Yasuhiro Takaya, Shin-Ichi Tanaka, "Nanoparticle sizing method based on fluorescence anisotropy analysis," Measurement, vol. 59, pp. 382-388, 2015.
[37] Bin-Cheng Yin, Peng Zuo, Hao Huo, Xinhua Zhong, Bang-Ce Ye, "DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay," Analytical Biochemistry, vol. 401, pp. 47-52, 2010.
[38] Lamdagen Corporation
http://lamdagen.com and https://www.youtube.com/watch?v=QLT1vrnJXWI.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔