跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張伯任
研究生(外文):Chang, Bo-Ren
論文名稱:利用離子性銥金屬錯合物 製作近紅外光固態有機發光電化學元件
論文名稱(外文):Near Infrared Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes
指導教授:蘇海清
指導教授(外文):Su, Hai-Ching
口試委員:蘇海清楊思博陸勤偉
口試委員(外文):Su, Hai-ChingYang, Zu-PoLu, Chin-Wei
口試日期:2018-07-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:離子性銥金屬錯合物近紅外有機發光電化學元件
外文關鍵詞:Cationic Iridium ComplexesNear InfraredLight-Emitting Electrochemical Cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
有機發光二極體(organic light-emitting device, OLED)具有低驅動電壓以及可以適用在大尺寸的可撓性基板等優點。其近紅外光波段在通訊、偵測、生醫等應用上相當具有發展潛力。但是複雜的多層結構以及低功函數的金屬電極卻限制了有機發光二極體的發展。固態有機發光電化學元件(light-emitting electrochemical cell, LEC)提供了新的構思,使得有機發光電化學元件相較於有機發光二極體有著許多突破性的發展,有機發光電化學元件的單層元件結構使得在製程變成更加的簡易、成本也大幅地降低。本實驗採用溶液製作單層結構元件,以氧化銦錫薄膜玻璃與銀做為元件的陽極與陰極,發光層則使用一系列新穎的銥離子金屬錯合物,進行頻譜光色、電流密度、元件亮度以及效率的探討。在過去文獻中,並沒有使用銥離子金屬錯合物製作的近紅外光有機電化學元件能提供發光峰值波長在750 nm之後的研究報告,而在本實驗中使用了一系列的銥離子金屬錯合物所製作的近紅外光有機電化學元件,能得到發光峰值波長達800 nm左右,這是相關研究領域的新突破,相當具有應用潛力。
Orangic light-emitting devices (OLED) have attracted attention in near-infrared (NIR) applications due to advantages of low power consumption and compatibility with large area and flexible substrates. But OLED typically require sophisticated multilayer structures and low-work-function cathodes to optimize device efficiencies, which limits their commercial realization. Solid-state light-emitting electrochemical cells (LEC) provide solution processablility, simple device architecture and compatibility with air stable metals, which can be more easily processed and thus reduce the fabrication cost. In this work, NIR LEC based on several novel cationic Iridium complexes were fabricated. Electroluminescence (EL) properties of these devices were measured and discussed. No reported LEC based on cationic Iridium complexes offer NIR EL peak wavelength >750 nm. In this work, several novel cationic iridium complexes are proposed to exhibit EL peak wavelength at ~800 nm. Such EL peak wavelength is among the longest reported and these devices have great potential in applications.
摘要 I
Abstract II
致謝 III
第一章 緒論 1
1.1前言 1
1.2有機發光二極體介紹 1
1.3有機發光電化學元件簡介 5
1.4離子性過渡金屬錯合物有機發光電化學元件之簡介 6
1.5近紅外光有機電化學元件文獻回顧 8
1.6研究動機與目的 16
第二章 理論基礎 17
2.1激子形成機制 17
2.1.1非輻射複合 18
2.1.2輻射複合 18
2.2主客體摻雜發光系統 19
2.2.1能量轉移機制 19
2.2.2載子捕捉機制 20
2.3有機發光電化學元件發光機制 20
2.3.1電化學模型 21
2.3.2電動力學模型 21
2.4電激發光元件電流機制 22
2.4.1空間電荷限制電流 22
2.4.2注入電荷限制電流 23
2.5有機發光元件效率之計算 24
2.6元件亮度及效率之計算 25
2.6.1元件亮度表示 25
2.6.2發光元件功率量測 26
2.6.3發光元件之外部量子效率 27
2.6.4發光元件之能量轉換效率 28
第三章 實驗流程及製程介紹 29
3.1 實驗設備介紹 29
3.2元件製程步驟 32
3.3實驗量測架構 34
3.3.1儀器介紹 34
3.3.2元件量測 35
3.4有機發光電化學元件結構及材料 36
3.4.1有機發光電化學元件材料 36
3.4.2有機發光電化學元件結構 37
第四章 實驗結果分析 38
4.1實驗設計與製程簡述 38
4.1.1實驗材料及配製 38
4.1.2元件結構 39
4.1.3元件製程 40
4.2實驗結果分析與討論 41
4.2.1有機電化學元件之光激發光頻譜分析 41
4.2.2有機電化學元件之電激發光頻譜分析 42
4.2.3有機電化學元件之電性分析 44
第五章 結論 48
參考文獻 49
參考文獻
[1] G. Qian and Z. Y. Wang, "Near-infrared Organic Compounds and Emerging Applications," Chem. Asian J., 2010, 5, 1006.
[2] Q. Pei, G. Yu, C. Zhang, Y. Yang and A. J. Heeger, "Polymer light-emitting electrochemical cells," Science, 1995, 269, 1086.
[3] Q. Pei, Y. Yang, G. Yu, C. Zhang and A. J. Heeger, "Polymer light-emittingelectrochemical cells: In situ formation of a light-emitting p-n junction," J. Am. Chem. Soc., 1996, 118, 3922.
[4] G. Destriau, "Scintillations of zinc sulfides with alpha-rays," J. Chem.Phys. 33, 620 (1936)
[5] W. Helfrich, W. G. Schneider, "Recombination Radiation in Anthracene Crystals" Phys. Rev. Lett, 14, 229–231 (1965)
[6] C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, 51(12), 913, September 1987
[7] R. H. Partridge, "Electroluminescence from poly(N-vinylcarbazole) films: 1. Carbazole cations," Polymer, vol. 24, pp. 733-738, 6(1983).
[8] J. H. Burroughes, et al., "Light-emitting diodes based on conjugated polymers," Nature, 347, 539, October 1990
[9] C. Tang, S. VanSlyke, and C. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989.
[10] 陳金鑫,黃孝文, "OLED:有機電激發光材料與元件",初版,台灣,五南圖書出 版, (2005).
[11] deMello, et al., "Ionic space-charge effects in polymer light-emitting diodes," Physical Review B, 57, 12951, May 1998.
[12] deMello, et al., "Interfacial feedback dynamics in polymer light-emitting electrochemical cells," Physical Review B, 66, 235210, December 2002.
[13] S. Bernhard, et al., "Efficient Electroluminescent Devices Based on a Chelated Osmium (II) Complex," Advanced Materials, 14, 433–436, January 2002.
[14] Slinker, J.D., et al., "Electroluminescent devices from ionic transition metal complexes," Journal of Materials Chemistry, 2007. 17(29): p. 2976-2988.
[15] L. He, et al., "Blue-Emitting Cationic Iridium Complexes with 2-(1H-Pyrazol-1-yl)pyridine as the Ancillary Ligand for Efficient Light-Emitting Electrochemical Cells," Advanced Functional Materials, 18, 2123–2131, June 2008.
[16] L. He, et al., "Toward Highly Efficient Solid-State White Light- Emitting Electrochemical Cells: Blue-Green to Red Emitting Cationic Iridium Complexes with Imidazole-Type Ancillary Ligands," Advanced Functional Materials, 19, 2950–2960, September 2009.
[17] M. A. Baldo, et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, 395, 151–154, September 1998.
[18] Handy, E.S., A.J. Pal, and M.F. Rubner, "Solid-state light-emitting devices based on the tris-chelated ruthenium (II) complex. 2. Tris(bipyridyl) ruthenium (II) as a high-brightness emitter," Journal of the American Chemical Society, 1999. 121(14): p. 3525-3528.
[19] E. S. Handy, et al., "Thin film light emitting devices from an electro- luminescent ruthenium complex," Applied Physics Letters, 69, 1686, September 1996
[20] Q. Zhang, et al., "Highly Efficient Electroluminescence from Green-Light-Emitting Electrochemical Cells Based on CuI Complexes," Advanced Functional Materials, 16,1203, 2006.
[21] W. Y. Ng, et al., "Electronic and Light-Emitting Properties of Some Polyimides Based on Bis(2,2':6',2''-terpyridine) Ruthenium(II) Complex," Chemistry of Materials, 11, 1165, March 1999 .
[22] H. J. Bolink, et al., "Observation of Electroluminescence at Room Temperature from a Ruthenium(II) Bis-Terpyridine Complex and Its Use for Preparing Light-Emitting Electrochemical Cells," Inorganic Chemistry, vol. 44, pp. 5966-5968, 2005/08/01 2005.
[23] H. J. Bolink, et al., "Deep-Red-Emitting Electrochemical Cells Based on Heteroleptic Bis-chelated Ruthenium (II) Complexes," Inorganic Chemistry, vol. 48, pp. 3907-3909, 2009.
[24] J. D. Slinker, et al., "Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex," Journal of the American Chemical Society, 126, 2763, February 2004.
[25] J. D. Slinker, et al., "Electroluminescent devices from ionic transition metal complexes," Journal of Materials Chemistry, 17, 2976, June 2007.
[26] M. S. Lowry, et al., "Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium (III) Complex," Chemistry of Materials, 17, 5712, October 2005.
[27] H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Applied Physics Letters, 76, 12, March 2000.
[28] E. I. Maltsev, et al., "Near-infrared electroluminescence in polymer composites based on organic nanocrystals," Applied Physics Letters, 81, 16, October 2002.
[29] H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," Journal of Photochemistry and Photobiology A: Chemistry, 166, 155, April 2004.
[30] A. R. Hosseini, C. Y. Koh, J. D. Slinker, S. Flores-Torres, H. D. Abruña and G. G. Malliaras, "Addition of phosphorescent dopant in electroluminescent device from ionic transition metal complexes," Chem. Mater., 2005, 17, 6114.
[31] H. J. Bolink, L. Cappelli, E. Coronado and P. Gaviña, "Observation of electroluminescence at room temperature from a ruthenium (II) bis-terpyridine complex and its use for preparing light-emitting electrochemical cells," Inorg. Chem., 2005, 44, 5966.
[32] S. Wang, X. Li, S. Xun, X. Wan and Z. Y. Wang, Macromolecules, "Near-infrared electrochromic and electroluminescent polymers containing pendant ruthenium complex groups," 2006, 39, 7502.
[33] H. Suzuki, et al., "Polymethine Dyes as Novel Efficient Infrared Electroluminescence Materials," Molecular Crystals and Liquid Crystals, 444, 51, February 2006.
[34] Z. Y. Wang, D. G. Ma, et al., "Near infrared light-emitting diodes based on composites of near infrared dye, CdSe/CdS quantum dots and polymer," Semiconductor Science and Technology, 22, 1021, August 2007.
[35] D. G. Ma, et al., "Near-infrared polymer light-emitting diodes based on infrared dye doped poly(N-vinylcarbazole) film," Thin Solid Films, 516, 7891, October 2007.
[36] S. Xun, J. Zhang, X. Li, D. Ma and Z. Y. Wang, "Synthesis and near-infrared luminescent properties of some ruthenium complexes," Synth. Met., 2008, 158, 484.
[37] H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí and S. Tatay, "Deep-Red-Emitting Electrochemical Cells Based on Heteroleptic Bis-chelated Ruthenium (II) complexes ," Inorg. Chem., 2009, 48, 3907.
[38] C.-C. Ho, et al., "Phosphorescent sensitized fluorescent solid-state near-infrared light-emitting electrochemical cells," Phys. Chem. Chem. Phys., 2011, 13, 17729.
[39] C.-L. Lee, et al., "Enhancing device efficiencies of solid-state near-infrared light-emitting electrochemical cells by employing a tandem device structure," Org. Electron., 2014, 15, 711.
[40] Q. Pei, et al., "Operating mechanism of light-emitting electrochemical cells," Nature Materials, 7, 167, March 2008.
[41] Y. Hu, C. Tracy, J. Gao, "High-resolution imaging of electrochemical doping and dedoping processes in luminescent conjugated polymers," Applied Physics Letters, 88, 123507, March 2006.
[42] 陳金鑫,黃孝文,夢幻顯示器:OLED材料與元件,初版,台灣,五南圖書出版,民國九十六年
[43] M. A. Baldo and D. F. O’Brien, "Excitonic singlet-triplet ratio in a semiconducting organic thin film," Phys. Rev. B, 60, 14422, 1990.
[44] J. C. deMello, "Organic electronics: What’s in a name? " Nature Materials, 6, 796, November 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top