跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅聖學
研究生(外文):Luo, Sheng-Hsueh
論文名稱:混合車流及高密度下之車輛影像辨識及軌跡追蹤
論文名稱(外文):A Vehicle Detection and Tracking Algorithm for Automated Trajectory Extraction under Mixed Traffic and High Density Conditions
指導教授:黃家耀黃家耀引用關係
指導教授(外文):Wong, Ka-Io
口試委員:黃家耀陳柏華李子璋
口試委員(外文):Wong, Ka-IoChen, Albert Y.Lee, Tzu-Chang
口試日期:2017-08-04
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:58
中文關鍵詞:電腦視覺車輛影像辨識軌跡追蹤混合車流複雜背景高密度
外文關鍵詞:Computer visionvehicle detectiontrajectory extractionmixed trafficcomplex backgroundhigh density
相關次數:
  • 被引用被引用:3
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:2
台灣市區道路主要為汽機車組成之混合車流,由於機車體積小且機動性高,機車騎士常會利用汽車間的空隙進行鑽車,當車輛間隙較小、排列較為緊密時,會使車輛辨識受到干擾,同時當車輛於停等紅燈時,容易產生高密度之混合車流,使車輛較難以被偵測到。此外,台灣市區道路路面有許多標線與標字,如停車格、機車待轉區及左轉專用標誌等,當車輛行駛於背景較為複雜之區域時,容易受到干擾,使車輛較難以被辨識出來,同時也容易將路面標線與標字誤判成車輛,使後續軌跡追蹤效果較差。由於台灣市區道路有著背景複雜與高密度混合車流之特性,容易導致車輛未被偵測到,並偵測出大量非車輛物體,使過去車流影像辨識之研究較不適用於台灣市區道路,因此需要建立新的影像辨識技術來擷取市區道路之完整車輛軌跡。
本研究結合卡爾曼濾波與網路流量模型之特性,提出新的物件追蹤方法,以改善混合車流及高密度情況下車輛偵測的辨識率低而導致車輛追蹤績效不佳的問題。先透過卡爾曼濾波進行軌跡追蹤,以彌補車輛未被偵測問題,再透過網路流量模型串聯車輛軌跡,除錯誤的偵測值之影響。比較單獨使用卡爾曼濾波、網路流量模型及混合模型之影像辨識效果,結果顯示卡爾曼濾波會受到車輛未被偵測之影響,導致產生之軌跡較為片段,同時會將錯誤的偵測值視為目標物體,產生出較多錯誤軌跡;網路流量模型則能夠過濾掉大部分錯誤偵測值之影響,但同時亦過濾掉部分正確之車輛軌跡。混合模型則同時保留兩追蹤方法之特性,於不同車流密度的情景下,混合模型都能夠良好的追蹤出車輛,整體結果以混合模型為最佳,顯示適用於擷取市區道路汽機車車流之軌跡。
In Taiwan’s urban road, the mixed traffic is mainly composed of passenger car and motorcycles. Due to the small size and high mobility, motorcyclist can weave in the stream easily. When different types of vehicles mix together on the road, it may reduce the performance of vehicle detection using computer vision. Besides, there are lots of markers on the road surface. When vehicle pass through these areas, the appearance of vehicles will be changed. It will cause the problem of failing to detect true vehicle and generating the wrong detection. Because of these limitations, the existing techniques of vehicle detecting and tracking have poor performance. Thus, the aim of this study is to develop a new algorithm to extract the trajectory of vehicles in urban road.
Our approach is combining two tracking algorithm as a hybrid model to improve the performance. First, we use Kalman filter to track vehicle and predict the trajectory for missing detection. Second, we use the network flow model to connect the position of vehicle. We also compare the performance of Kalman filter, network flow model and our approach. The results show that Kalman filter can reduce the missing detection. However, it cannot handle the problem of false detection and also generates many breaking trajectories. Network flow model can almost remove all the false detection, but it also removes some correct trajectory duo to the missing detection. Our approach combines the characteristics of these two tracking algorithms, which can both reduce the missing detection and remove the false detection. The result shows that our approach has better performance of trajectory extraction trajectory in Taiwan’s urban road.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 2
1.4 研究方法 3
1.5 研究流程 4
第二章 文獻回顧 5
2.1 車流影像辨識之應用 5
2.1.1 交通監控系統 5
2.1.2 車流行為及模式分析 6
2.1.3 交通安全評估分析 7
2.2 車流影像辨識及軌跡追踪 8
2.2.1 物體偵測 9
2.2.2 物體分類 10
2.2.3 物體追蹤 10
2.3 小結 13
第三章 研究方法 14
3.1 影片與樣本蒐集 14
3.2 物體偵測與分類 14
3.2.1 物體分類 16
3.2.2 物體偵測 17
3.3 物體追蹤 18
3.3.1 卡爾曼濾波 19
3.3.2 網路流量模型 23
3.3.3 混合模型 30
3.4 績效評估 31
3.4.1 偵測階段指標 31
3.4.2 追蹤階段指標 32
第四章 實證分析 35
4.1 影像與樣本擷取 35
4.2 物體偵測與分類 37
4.2.1 特徵值與分類器 37
4.2.2 物體偵測 37
4.3 物體追蹤 40
4.4 車流軌跡於車流特性分析之應用 48
4.4.1 車流速度分析 48
4.4.2 停等車隊疏解時間 49
4.4.3 與實際車流速度比較 50
第五章 結論與建議 52
5.1 結論 52
5.2 建議 53
參考文獻 54
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 2
1.4 研究方法 3
1.5 研究流程 4
第二章 文獻回顧 5
2.1 車流影像辨識之應用 5
2.1.1 交通監控系統 5
2.1.2 車流行為及模式分析 6
2.1.3 交通安全評估分析 7
2.2 車流影像辨識及軌跡追踪 8
2.2.1 物體偵測 9
2.2.2 物體分類 10
2.2.3 物體追蹤 10
2.3 小結 13
第三章 研究方法 14
3.1 影片與樣本蒐集 14
3.2 物體偵測與分類 14
3.2.1 物體分類 16
3.2.2 物體偵測 17
3.3 物體追蹤 18
3.3.1 卡爾曼濾波 19
3.3.2 網路流量模型 23
3.3.3 混合模型 30
3.4 績效評估 31
3.4.1 偵測階段指標 31
3.4.2 追蹤階段指標 32
第四章 實證分析 35
4.1 影像與樣本擷取 35
4.2 物體偵測與分類 37
4.2.1 特徵值與分類器 37
4.2.2 物體偵測 37
4.3 物體追蹤 40
4.4 車流軌跡於車流特性分析之應用 48
4.4.1 車流速度分析 48
4.4.2 停等車隊疏解時間 49
4.4.3 與實際車流速度比較 50
第五章 結論與建議 52
5.1 結論 52
5.2 建議 53
參考文獻 54
1. Alexiadis, V., Colyar, J., Halkias, J., Hranac, R., & McHale, G. (2004) The next generation simulation program. Institute of Transportation Engineers. ITE Journal, 74(8), 22.
2. Autey, J., Sayed, T., & Zaki, M. H. (2012) Safety evaluation of right-turn smart channels using automated traffic conflict analysis. Accident Analysis & Prevention, 45, 120-130.
3. Azevedo, C. L., Cardoso, J. L., Ben-Akiva, M., Costeira, J. P., & Marques, M. (2014) Automatic vehicle trajectory extraction by aerial remote sensing. Procedia-Social and Behavioral Sciences, 111, 849-858.
4. Berclaz, J., Fleuret, F., Turetken, E., & Fua, P. (2011) Multiple object tracking using k-shortest paths optimization. IEEE transactions on pattern analysis and machine intelligence, 33(9), 1806-1819.
5. Beymer, D., McLauchlan, P., Coifman, B., & Malik, J. (1997, June) A real-time computer vision system for measuring traffic parameters. In Computer Vision and Pattern Recognition, 1997. Proceedings., IEEE Computer Society Conference on, 1997. IEEE, pp. 495-501.
6. Blake, A., & Isard, M. (1997). The CONDENSATION algorithm-conditional density propagation and applications to visual tracking. In Advances in Neural Information Processing Systems pp. 361-367
7. Brockfeld, E., Kühne, R., & Wagner, P. (2004) Calibration and validation of microscopic traffic flow models. Transportation Research Record: Journal of the Transportation Research Board, (1876), 62-70.
8. Brown, L. M., Senior, A. W., Tian, Y. L., Connell, J., Hampapur, A., Shu, C. F., ... & Lu, M. (2005, January) Performance evaluation of surveillance systems under varying conditions. In IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Colorado, USA.
9. Buch, N., Velastin, S. A., & Orwell, J. (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems, 12(3), 920-939.
10. Buch, N., Orwell, J., & Velastin, S. A. (2008). Detection and classification of vehicles for urban traffic scenes.
11. Cucchiara, R., & Piccardi, M. (1999, June). Vehicle Detection under Day and Night Illumination. In IIA/SOCO.
12. Cucchiara, R., Piccardi, M., & Mello, P. (2000). Image analysis and rule-based reasoning for a traffic monitoring system. IEEE Transactions on Intelligent Transportation Systems, 1(2), 119-130.
13. Chari, V., Lacoste-Julien, S., Laptev, I., & Sivic, J. (2015). On pairwise costs for network flow multi-object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 5537-5545.
14. Chiu, C. C., Ku, M. Y., & Wang, C. Y. (2010). Automatic Traffic Surveillance System for Vision-Based Vehicle Recognition and Tracking. J. Inf. Sci. Eng., 26(2), 611-629.
15. Chiu, Y.-L., Chen, A. Y., and Hsieh, M.-H. (2016) Vision Based Traffic Conflict Analytics of Mixed Traffic Flow, The 16th International Conference on Computing in Civil and Building Engineering (ICCCBE), Osaka, Japan, July 6-8.
16. Coifman, B., Beymer, D., McLauchlan, P., & Malik, J. (1998) A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies, 6(4), 271-288. ISO 690
17. Dalal, N., & Triggs, B. (2005, June) Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005. IEEE, Vol. 1, pp. 886-893
18. Fathy, M., & Siyal, M. Y. (1998) A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters. IEEE Transactions on Vehicular Technology, 47(4), 1342-1349.
19. Guido, G., Saccomanno, F., Vitale, A., Astarita, V., & Festa, D. (2010) Comparing safety performance measures obtained from video capture data. Journal of Transportation Engineering, 137(7), 481-491.
20. Gupte, S., Masoud, O., Martin, R. F., & Papanikolopoulos, N. P. (2002). Detection and classification of vehicles. IEEE Transactions on intelligent transportation systems, 3(1), 37-47.
21. Han, F., Shan, Y., Cekander, R., Sawhney, H. S., & Kumar, R. (2006, August). A two-stage approach to people and vehicle detection with hog-based svm. In Performance Metrics for Intelligent Systems 2006 Workshop pp. 133-140.
22. Hoogendoorn, S., Van Zuylen, H., Schreuder, M., Gorte, B., & Vosselman, G. (2003) Microscopic traffic data collection by remote sensing. Transportation Research Record: Journal of the Transportation Research Board, (1855), 121-128.
23. Hoyer, R., & Fellendorf, M. (1997, June). Parametrization of microscopic traffic flow models through image processing. In 8th IFAC Symposium on Transportation Systems, Chania, Greece.
24. Hsieh, J. W., Yu, S. H., Chen, Y. S., & Hu, W. F. (2006). Automatic traffic surveillance system for vehicle tracking and classification. IEEE Transactions on Intelligent Transportation Systems, 7(2), 175-187.
25. Jiang, H., Fels, S., & Little, J. J. (2007, June). A linear programming approach for multiple object tracking. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007. IEEE, pp. 1-8..
26. Kovvali, V. G., Alexiadis, V., & Zhang, P. E. (2007) Video-based vehicle trajectory data collection. In Transportation Research Board 86th Annual Meeting (No. 07-0528).
27. Laureshyn, A., Ardo, H., Svensson, A., & Jonsson, T. (2009) Application of automated video analysis for behavioural studies: concept and experience. IET Intelligent Transport Systems, 3(3), 345-357.
28. Leduc, G. (2008) Road traffic data: Collection methods and applications. Working Papers on Energy, Transport and Climate Change, 1(55).
29. Lee, T. C., Polak, J. W., & Bell, M. G. (2008) Trajectory Extractor user manual version 1.0. Centre for Transport Studies, Imperial College London, United Kingdom.
30. Medioni, G., Cohen, I., Brémond, F., Hongeng, S., & Nevatia, R. (2001). Event detection and analysis from video streams. IEEE Transactions on pattern analysis and machine intelligence, 23(8), 873-889.
31. Munigety, C., Vicraman, V., & Mathew, T. (2014) Semiautomated Tool for Extraction of Microlevel Traffic Data from Videographic Survey. Transportation Research Record: Journal of the Transportation Research Board, (2443), 88-95.
32. Mussone, L., Matteucci, M., Bassani, M., & Rizzi, D. (2013) An innovative method for the analysis of vehicle movements in roundabouts based on image processing. Journal of Advanced Transportation, 47(6), 581-594.
33. Nguyen, L. X., Hanaoka, S. & Kawasaki, T. (2012) Describing non-lane-based motorcycle movements in motorcycle-only traffic flow. Transportation Research Record: Journal of the Transportation Research Board, 2281, 76-82.
34. Nguyen, P. V., & Le, H. B. (2008, December) A multi-modal particle filter based motorcycle tracking system. In Pacific Rim International Conference on Artificial Intelligence (pp. 819-828). Springer Berlin Heidelberg. ISO 690
35. Ossen, S., & Hoogendoorn, S. (2008) Validity of trajectory-based calibration approach of car-following models in presence of measurement errors. Transportation Research Record: Journal of the Transportation Research Board, (2088), 117-125.
36. Punzo, V., Borzacchiello, M. T., & Ciuffo, B. (2011) On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data. Transportation Research Part C: Emerging Technologies, 19(6), 1243-1262.
37. Rad, R., & Jamzad, M. (2005). Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 26(10), 1597-1607.
38. Saunier, N., & Sayed, T. (2006, June) A feature-based tracking algorithm for vehicles in intersections. In The 3rd Canadian Conference on Computer and Robot Vision (CRV'06) IEEE, pp. 59-59.
39. Saunier, N., & Sayed, T. (2007) Automated analysis of road safety with video data. Transportation Research Record: Journal of the Transportation Research Board, 2019, 57-64.
40. Saunier, N., & Sayed, T. (2008) Probabilistic framework for automated analysis of exposure to road collisions. Transportation Research Record: Journal of the Transportation Research Board, (2083), 96-104.
41. Setchell, C., & Dagless, E. L. (2001) Vision-based road-traffic monitoring sensor. IEE Proceedings-Vision, Image and Signal Processing, 148(1), 78-84.ISO 690.
42. Setchell, C. J. (1997) Applications of Computer Vision to Road-traffic Monitoring. Doctoral dissertation, University of Bristol.
43. Shafique, K., & Shah, M. (2005). A noniterative greedy algorithm for multiframe point correspondence. IEEE transactions on pattern analysis and machine intelligence, 27(1), 51-65.
44. Smith, K., Gatica-Perez, D., Odobez, J. M., & Ba, S. (2005, June) Evaluating multi-object tracking. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops IEEE, pp. 36-36.
45. Song, X., & Nevatia, R. (2007, February) Detection and tracking of moving vehicles in crowded scenes. In Motion and Video Computing, 2007. WMVC'07. IEEE Workshop on, 2007. IEEE, pp. 4-4.
46. Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on, 1999. IEEE, Vol. 2, pp. 246-252.
47. Tageldin, A., Sayed, T., & Wang, X. (2015) Can Time Proximity Measures Be Used as Safety Indicators in All Driving Cultures? Case Study of Motorcycle Safety in China. Transportation Research Record: Journal of the Transportation Research Board, (2520), 165-174.
48. Welch, G. and Bishop, G., (2006) An introduction to the Kalman filter. Univ. North Carolina, Chapel Hill, NC, Tech. Rep. 95-041.
49. Viola, P., & Jones, M. (2001)Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, 2001. IEEE, Vol. 1, pp. I-I.
50. Zaki, M. H., & Sayed, T. (2013) A framework for automated road-users classification using movement trajectories. Transportation Research Part C: Emerging Technologies, 33, 50-73.
51. Zhan, C., Duan, X., Xu, S., Song, Z., & Luo, M. (2007) An improved moving object detection algorithm based on frame difference and edge detection. In Image and Graphics, 2007. ICIG 2007. Fourth International Conference on, 2007. IEEE, pp. 519-523.
52. 謝孟修(2015)電腦視覺於機車相對距離之空間呈現(The Spatial Representation of the Computer Vision Based Motorcycle Relative Distance.),台灣國立台灣大學工學院土木工程學系,碩士論文。
53. 邱彥霖(2016),應用電腦視覺處理混合車流之交通衝突分析,台灣國立台灣大學工學院土木工程學系,碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊