1. 蕭志穎、姚銘忠 (2013),「考量數量折扣之合併補貨問題」,國立交通大學運輸科技與管理學系,行政院國家科學委員會補助大專學生研究計畫研究成果報告。
2. 曾郁芳 (2002),「固定自有倉庫容量下倉租具數量折扣之經濟訂購批量模式」,東吳大學會計學系碩士論文。3. 鄭舜維 (2009),「庫存空間受限下最佳損毀率與儲存量決策問題之研究」,東吳大學會計學系碩士論文。4. 鄭淑惠 (2009),「台灣地區第四類公共危險物品場所執行設備檢查之探討-以室內儲存場所為例」,國立交通大學工學院碩士在職專班產業安全與防災組碩士論文。5. 許天成 (2008),「多階生產供應鏈體系最佳運籌模式與策略之研究」,東海大學工業工程與經營資訊研究所博士論文。6. 許炎邦 (2009),「既有易燃性液體儲槽場所性能改善評估研究- 以異丙醇儲槽為例」,國立交通大學工學院產業安全與防災學程碩士論文。7. 何陽 (2007),「在考量委外倉儲成本與運輸數量折扣下生產存貨系統的最佳聯合補貨策略」,東海大學工業工程與經營資訊研究所碩士論文。8. 何應欽 (2015),「生產與作業管理」,華泰文化出版社。
9. 李春成 (1999),「自有與外租兩倉庫存貨決策之研究」,國立交通大學經營管理研究所博士論文。10. 李芳娟 (2000),「二冪策略下合併補貨問題之理論分析與最佳解搜尋法」,東海大學工業工程與經營資訊研究所碩士論文。11. 李秀玲 (2013),「電子化學品產銷供應鏈之存貨控制模擬研究」,元智大學工業工程與管理學系碩士論文。12. 邱創鈞 (2004),「供應鏈體系下藉由價格折扣與預算限制機制以創造互惠之批量補貨策略研究」,東海大學工業工程與經營資訊研究所博士論文。13. 蘇雄義 (2012),「供應鏈管理- 原理程序實務」,台北智勝文化事業有限公司出版。
14. 陳銘崑、吳忠敏、傅新杉 (2002) ,「供應鏈管理」,台灣培生教育出版。
15. 陳宗輝 (2002),「整合供應商生產及採購者補貨供應鏈模式之研究」,東海大學工業工程與經營資訊研究所碩士論文。16. 陳栢宏 (2008),「危險品貨櫃運送安全與防護」,國立臺灣海洋大學商船學系碩士班碩士論文。
17. 陳均宜 (2013),「考慮運輸成本及搬運產能限制之合併補貨問題」,國立交通大學運輸科技與管理學系碩士論文。18. 陳育誠、邱純慧 (2014),「2014 年特用化學品產業年鑑」,台灣新竹,工研院產業經濟研究與趨勢研究中心。
19. 王昱鈞 (2003),「於單一倉儲及多個零售商配銷系統中最佳穩定-巢狀存貨政策之研究」,東海大學工業工程與經營資訊研究所碩士論文。20. 王立志 (2006),「系統化運籌與供應鏈管理-企業營運新典範」,滄海書局。
21. 梁信翔 (2006),「考慮需求與存貨水準有關且自有倉庫容量有限下存貨模型之研究」,長庚大學企業管理學研究所碩士論文。
22. 蔡承達 (2004),「在三階供應鏈中最佳製造商存貨代管策略之研究」,東海大學工業工程與經營資訊研究所碩士論文。23. 張建朝 (2002),「二階供應鏈體制下合併補貨問題之研究」,東海大學工業工程與經營資訊研究所碩士論文。24. 張淑珍 (2009),「化學品製造業存貨管理決策之研究- 以 G 公司為例」,國立成功大學工學院工程管理碩士在職專班碩士論文。25. 胡占鰲 (2010),「化工業客製化產品最適原料存貨決策模式之研究~ 以 EVA 乳膠產品為例」,國立中山大學企業管理學系研究所碩士論文。26. 楊程皓 (2005),「季節性商品整合性配銷與調撥方法~ 以家居用品零售商為例」,國立清華大學工業工程與工程管理學系碩士論文。27. 祝毓秀 (2012),「化學品公司存貨管理對策之研究- 以中小企業 W 公司進口原料為例」,國立台灣科技大學工業管理系 EMBA 碩士論文。28. 郭金鷹、李文亮、洪肇嘉、李旻謙、周芸 (2011),「化學品運輸安全脆弱性分析」,勞工安全衛生研究季刊,第19卷第4期,579頁-587頁。
29. 郭金鷹、洪肇嘉、廖光裕 (2012),「台灣化學品管理現況及未來展望」,環保簡訊,第16期,1頁-13頁。
30. 洪肇嘉、郭金鷹 (2007),「台灣化學品儲存及運輸管理制度初探」,環保署環境事故簡訊電子報,第5期,1頁-16頁。
31. 林志信 (2017),「公共危險物品存貨管理對策- 以E 化學公司產品為例」,國立交通大學管理學院運輸物流學程碩士班碩士論文。32. 林鈺祥 (2012),「供應鏈中損耗性產品之雙倉定址與存貨政策」,國立臺灣科技大學工業管理系博士論文。33. 林玥岑、曹常成 (2012),「危害性物品運輸車輛職業駕駛行為安全現況調查研究」,行政院勞工委員會勞工安全衛生研究所。
34. 林文興、陳政洞 (2010),「公共危險物品場所設置及消防設施之研究」,2010 年物業管理暨防災國際學術研討會與第四屆物業管理研究成果發表會,pp.589-610.
35. Alfa Aesar (2016),「物質安全資料表」,1頁- 6頁。
36. 內政部消防署網站:http://www.nfa.gov.tw/Main/Content.aspx?ID=&MenuID=674,2017年12月擷取。
37. Archibald, B.C., and Silver, E.A., (1978), “(s, S) policies under continuous review and discrete compound Poisson demand,” Management Science, Vol. 24, No. 9, pp.899-909.
38. Aksen, D., K. Altınkemer and S. Chand, (2003), “The single-item lot-sizing problem with immediate lost sales,” European Journal of Operational Research, Vol. 147, No. 3, pp.558-566.
39. Axsäter, S., (1997), “Simple evaluation of echelon stock (R, Q) policies for two-level inventory,” IIE Transactions, Vol. 29, No. 8, pp.661-669.
40. Bhunia, A.K. and M. Maiti, (1998), “A two warehouse inventory model for deteriorating items with a linear trend in demand and shortages,” Journal of the Operational Research Society, Vol. 49, No. 3, pp.287-292.
41. Brahimi, N., N. Absi, S. Dauzère-Pérès and A. Nordli, (2017), “Single-item dynamic lot-sizing problems: An updated survey,” European Journal of Operational Research, Vol. 263, No. 3, pp.838-863.
42. Chan, G.H., Z.H. Xia, and E.U. Choo, (1999), “The critical cut-off value approach for dynamic lot sizing problems with time varying cost parameters,” Computers and Operations Research, Vol. 26, No. 2, pp.179-188.
43. Chary, S.N., (2008), “Production and operations management,” Tata McGraw Hill, 3rd Edition.
44. Chen, F. and Zheng, Y.S., (1994), “Evaluating echelon stock (R, nQ) policies in serial production/inventory systems with stochastic demand,” Management Science, Vol. 40, No. 10, pp.1262-1275.
45. Choudhary, D., and Shankar, R., (2014), “A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection,” Computers & Industrial Engineering, Vol. 71, pp.1-9.
46. Chung, K.J. and Y.F. Huang, (2004), “Optimal replenishment policies for EOQ inventory model with limited storage capacity under permissible delay in payments,” Opsearch, Vol. 41, pp.16-34.
47. Chyr, F., T.M. Lin and C.F. Ho, (1990), “A new approach to the dynamic lot size model,” Engineering Costs and Production Economics, Vol. 20, No. 3, pp.255-263.
48. Comeaux, E.J. and B.R. Sarker, (2006), “Optimal Inventory Policy for Specialty Chemical Products in Multiple Packages,” The Journal of the Operational Research Society, Vol. 57, No. 4, pp.357-366.
49. Dave, U., (1988), “On the EOQ models with two levels of storage,” Opsearch, Vol. 25, No. 3, pp.190-196.
50. Ehrhardt, R. and Mosier, C., (1984), “A revision of the power approximation for computing (s, S) policies,” Management Science, Vol. 30, No. 5, pp.618-622.
51. Evans, J.R., (1985), “An efficient implementation of the Wagner-Whitin algorithm for dynamic lot-sizing,” Journal of Operations Management, Vol. 5, No. 2, pp.229-235.
52. Fan, J. and G. Wang, (2018), “Joint optimization of dynamic lot and warehouse sizing problems,” European Journal of Operational Research, Vol. 267, No. 3, pp.849-854.
53. Federgruen, A. and M. Tzur, (1991), “A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(n log n) or O(n) time,” Management Science, Vol. 31, No. 8, pp.909-925.
54. Fordyce, J.M. and F.M. Webster, (1984), “The Wagner-Whitin algorithm made simple,” Production and Inventory Management, Vol. 25, No. 2, pp.21-30.
55. Gao, Z., L. Tang, H. Jin and N. Xu, (2008), “An optimization model for the production planning of overall refinery,” Chinese Journal of Chemical Engineering, Vol. 16, No. 1, pp.67-70.
56. García-Flores, R., X.Z. Wang and T.F. Burgess, (2003), “Tuning Inventory Policy Parameters in a Small Chemical Company,” The Journal of the Operational Research Society, Vol. 54, No. 4, pp.350-361.
57. Goswami, A., and Chaudhuri, K.S., (1992), “An economic order quantity model for items with two levels of storage for a linear trend in demand,” Journal of the Operational Research Society, Vol. 43, No. 2, pp.157-167.
58. Goyal, S.K., (1985), “Economic order quantity under conditions of permissible delay in payments,” Journal of the Operational Research Society, Vol. 36, No. 4, pp.335-338.
59. Gupta, A. and C.D. Maranas, (2003), “Managing demand uncertainty in supply chain planning,” Computers and Chemical Engineering, Vol. 27, pp.1219-1227.
60. Harris, F.W. (1915), “Operations cost (Factory management series),” Chicago: Shaw.
61. Hartley, R.V., (1976), “Operations research- a managerial emphasis,” Good Year Publishing Company, California, pp.315-317.
62. Heijden, M.C. van der, Diks, E.B., and de Kok, A.G., (1997), “Stock allocation in general multi-echelon distribution systems with (R, S) order-up-to-policies,” International Journal of Production Economics, Vol. 49, No. 2, pp.157-174.
63. Hsu, V.N., (2000), “Dynamic economic lot size model with perishable inventory,” Management Science, Vol. 46, No. 8, pp.1159-1169.
64. Jaggi, C.K. and Verma, P., (2010), “An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities,” International Journal of Services Operations and Informatics, Vol. 5, No. 3, pp.209-230.
65. Jaggi, C.K., Tiwari, S., and Goel, S., (2016), “Replenishment policy for non-instantaneous deteriorating items in a two storage facilities under inflationary conditions,” International Journal of Industrial Engineering Computations, Vol. 7, No. 33, pp.489-506.
66. Kaliraman, N.K., R. Raj, S. Chandra and H. Chaudhary, (2017), “Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment,” Yugoslav Journal of Operations Research, Vol. 27, No. 1, pp.109-124.
67. Kelle, P. and A. Milne, (1999), “The effect of (s, S) ordering policy on the supply chain,” International Journal of Production Economics, Vol. 59, No. 1, pp.113-122.
68. Kuhn, H., (1997), “A dynamic lot sizing model with exponential machine breakdowns,” European Journal of Operational Research, Vol. 100, No. 3, pp.514-536.
69. Lee, C.C., (2006), “Two-Warehouse Inventory Model with Deterioration under FIFO Dispatching Policy,” European Journal of Operational Research, Vol. 174, No. 2, pp.861-873.
70. Lee, C.C. and Ma, C.Y., (2000), “Optimal inventory policy for deteriorating items with two-warehouse and time-dependent demands,” Production Planning & Control, Vol. 11, No. 7, pp.689- 696.
71. Lee, C.C. and Hsu, S.L., (2009), “A two-warehouse production model for deteriorating inventory items with time-dependent demands,” European Journal of Operational Research, Vol. 194, No. 3, pp.700-710.
72. Lee, C.Y., S. Çetinkaya and A.P.M. Wagelmans, (2001), “A dynamic lot-sizing model with demand time windows,” Management Science, Vol. 47, No. 10, pp.1384-1395.
73. Liang, Y., and Zhou, F., (2011), “A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment,” Applied Mathematical Modelling, Vol. 35, No. 5, pp.2221-2231.
74. Liao, J.J. and K.J. Chung, (2009), “An EOQ model for deterioration items under trade credit policy in a supply chain system,” Journal of the Operations Research Society of Japan, Vol. 52, No. 1, pp.46-57.
75. Mandal, P. and B.C. Giri, (2017), “A two-warehouse integrated inventory model with imperfect production process under stock-dependent demand and quantity discount offer,” International Journal of Systems Science: Operations & Logistics, Published online: 21 Jun 2017, pp.1-12.
76. Mazdeh, M.M., M. Emadikhiav, and I. Parsa, (2015), “A heuristic to solve the dynamic lot sizing problem with supplier selection and quantity discounts,” Computers & Industrial Engineering, Vol. 85, pp.33-43.
77. Minner, S., (2009), “A comparison of simple heuristics for multi-product dynamic demand lot-sizing with limited warehouse capacity,” International Journal of Production Economics, Vol. 118, No. 1, pp.305-310.
78. Mohanty, D.J., R.S. Kumar and A. Goswami, (2016), “A two-warehouse inventory model for non-instantaneous deteriorating items over stochastic planning horizon,” Journal of Industrial and Production Engineering, Vol. 33, No. 8, pp.516-532.
79. Moqri, M., Javadi, M., and Yazdian, A., (2011), “Supplier selection and order lot sizing using dynamic programming,” International Journal of Industrial Engineering Computations, Vol. 2, No.2, pp.319-328.
80. NIOSH, (2007), “Niosh Pocket Guide to Chemical Hazards,” DHHS (NIOSH) Publication No. 2005-149, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
81. Omar, M. and M.M. Deris, (2001), “The Silver-Meal heuristic method for deterministic time-varying demand,” Matematika, Vol. 17, No. 1, pp.7-14.
82. Önal, M., Romeijn, H.E., Sapra, A. and van den Heuvel, W., (2015) “The economic lot–sizing problem with perishable items and consumption order preference,” European Journal of Operational Research, Vol. 244, No. 3, pp.881-891.
83. Önal, M., (2016), “The two-level economic lot sizing problem with perishable items,” Operations Research Letters, Vol. 44, No. 3, pp.403-408.
84. Orlicky, J., (1975), “Material Requirement Planning,” McGraw-Hill, New York.
85. Parlar, M., Perry, D., and Stadje, W., (2011), “FIFO versus LIFO issuing policies for stochastic perishable inventory systems,” Methodology and Computing in Applied Probability, Vol. 13, No. 2, pp.405-417.
86. Richard, P.P. and Stanley, A.G., (2003), “Wiley Guide to Chemical Incompatibilities,” 2nd Ed., John Wiley & Son, Canada.
87. Sana, S.S., (2015), “An EOQ model for stochastic demand for limited capacity of own warehouse,” Annals of Operations Research, Vol. 233, No. 1, pp.383-399.
88. Sana, S., Mondal, S.K., Sarkar, B.K., and Chaudhary, K.S., (2011), “Two-warehouse inventory model on pricing decision,” International Journal of Management Science and Engineering Management, Vol. 6, No. 6, pp.467-480.
89. Sarma, K.V.S., (1983), “A deterministic inventory model with two levels of storage and an optimum release rule,” Opsearch, Vol. 20, No. 3, pp.175-180.
90. Silver, E.A., (1979), “A simple replenishment rule for a linear trend in demand,” Journal of the Operational Research Society, Vol. 30, No. 1, pp.71-75.
91. Silver, E.A., D.F. Pyke and R. Peterson., (1998), “Inventory Management and Production Planning and Scheduling,” 3rd ed., Wiley Press, 1998.
92. Silver, E.A., and H.C. Meal, (1969), “A simple modification of the EOQ for the case of a varying demand rate,” Production and Inventory Management, Vol. 10, pp.52-65.
93. Silver, E.A., and H.C. Meal, (1973), “A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment,” Production and Inventory Management, Vol. 14, No. 2, pp.64-74.
94. Sox, C.R., (1997), “Dynamic lot sizing with random demand and non-stationary costs,” Operation Research Letters, Vol. 20, No. 4, pp.155-164.
95. Stevenson, W.J., (2009), “Operations Management,” Tata McGraw Hill, 9th Edition.
96. Tagaras, G., and Vlachos, D., (2001), “A periodic review inventory system with emergency replenishments,” Management Science, Vol. 47, No. 3, pp.415-429.
97. Tsai, J.F., (2007), “An optimization approach for supply chain management models with quantity discount policy,” European Journal of Operational Research, Vol. 177, No. 2, pp.982-994.
98. Vílchez, J.A., Sevilla, S., Montiel, H. and Casal, J., (1995), “Historical analysis of accidents in chemical plants and in the transportation of hazardous materials,” Journal of Loss Prevention in the Process Industries, Vol. 8, No. 2, pp.87-96.
99. Wagner, H.M. and Whitin, T.M., (1958), “Dynamic version of the economic lot size model,” Management Science, Vol. 5, No. 1, pp.89-96.
100. Zheng, Y.S., and Federgruen, A., (1991), “Finding optimal (s, S) policies is about as simple as evaluating a single policy,” Operations Research, Vol. 39, No. 4, pp.654-665.