跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張珈寧
研究生(外文):Chang, Chia-Ning
論文名稱:鰭式場效電晶體與穿隧式場效電晶體於低壓降線性穩壓器應用之探討與分析
論文名稱(外文):Exploration and Evaluation of Low-Dropout Linear Voltage Regulator with FinFET, TFET and Hybrid TFET-FinFET Implementations
指導教授:莊景德
指導教授(外文):Chuang, Ching-Te
口試委員:蘇彬陳柏宏
口試委員(外文):Su, PinChen, Po-Hung
口試日期:2017-08-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:72
中文關鍵詞:鰭式場效電晶體穿隧式場效電晶體低壓降線性穩壓器數位線性穩壓器
外文關鍵詞:FinFETTunnel FET (TFET)LDODigital Voltage Regulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對穿隧式場效電晶體與鰭式場效電晶體於類比低壓降線性穩壓器與數位線性穩壓器應用作探討與分析。我們利用Sentaurus三維TCAD混合模式模擬器針對電晶體的物理特性進行模擬與分析,並且利用HSPICE電路模擬軟體配合經TCAD模擬器校準過的查表式Verilog-A進一步針對電路進行模擬。

針對類比低壓降線性穩壓器(LDO),由於穿隧式場效電晶體的傳輸機制不同於傳統電晶體,因此我們從電晶體的角度出發探討其轉移電導、輸出阻抗與本質增益的特性,可以發現在低壓下,穿隧式場效電晶體可以提供較好的表現;然而鰭式場效電晶體在電流驅動能力上佔有優勢,因而可以將之應用於高效能類比電路。進一步,我們利用上述兩電晶體針對鰭式線性穩壓器、穿隧式線性穩壓器和混合式線性穩壓器就頻率響應、暫態響應與電源抑制比(PSRR)著手討論。研究結果分析指出,在超低耗功率應用下,由於穿隧式電晶體具有較好的本質增益與飽和特性,因此在相同操作電流設計下,穿隧式線性穩壓器與混合式線性穩壓器可提供較鰭式線性穩壓器的迴路增益與電源抑制比。

隨著操作電壓的下降,類比線性穩壓器的表現會劇烈衰退,因此在低操作電壓下,數位線性穩壓器進而成為理想的選擇。在0.5伏特的操作電壓下,首先我們針對其中的數位誤差偵測器(DED)進行分析,模擬結果指出,鰭式誤差偵測器的偵測速率可較穿隧式誤差偵測器快上約莫70倍以上。再者,以鰭式誤差偵測器作為偵測源,我們針對後續的充放電幫浦端就鰭式幫浦、混合式幫浦與平行式幫浦三種架構做討論,研究分析顯示,由於穿隧式場效電晶體於0.5伏特的操作電壓下電流驅動能力遠不及於鰭式場效電晶體,因此將鰭式場效電晶體應用於數位線性穩壓器的表現是最具優勢的。
This thesis focuses on analog low-dropout linear voltage regulator and digitally controlled linear voltage regulator with FinFET, TFET and Hybrid TFET-FinFET implementations. We use Sentaurus atomistic 3D TCAD mixed-mode to analysis fundamental physical characteristics of transistors. Also, Verilog-A look-up table calibrated with simulation results from TCAD is applied in HSPICE circuit simulation tool for further analysis.

In exploration of analog low-dropout linear voltage regulator (LDO), because the transport mechanism of TFET is different from conventional MOSFET and FinFET, we do investigation of transconductance, output resistance and intrinsic gain of devices at first. It can be observed that, TFET demonstrates better performance at low operating voltage, while FinFET exhibits outperformance in current drive ability which is an advantage in high-performance applications. Furthermore, the performance of FinFET-LDO, TFET-LDO and Hybrid-LDO including frequency response, transient response and power supply rejection ration (PSRR) are evaluated. The results indicate that for ultra-low power application, TFET-LDO and Hybrid-LDO provide better loop-gain and PSRR than FinFET-LDO under comparable operating current design.

As operating voltage further reduced, the performance of analog LDO degrades severely; therefore, digitally controlled linear voltage regulator becomes the choice. Firstly, we analyze the digital error detector (DED) based on FinFET and TFET at 0.5V operating voltage. The sense period of TFET-DED is 7x times longer than FinFET-DED. Next step, we investigate the performance of pull/push devices under FinFET, Hybrid and Parallel structures based on FinFET-DED. The results demonstrate FinFET applied in digitally controlled voltage regulator stands out at 0.5V operating voltage due to the relatively strong current drive ability.
摘要 I
Abstract II
誌謝 III
Contents IV
Table Caption VI
Figure Caption VII
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Organization 3
Chapter 2 6
Device Analysis of TFET and FinFET 6
2.1 Introduction 6
2.2 Device Design 7
2.2.1 Characteristic of TFET Device 7
2.2.2 Device Structures and Parameters 9
2.3 Simulation Methodogies 11
2.4 Summary 12
Chapter 3 19
Analog Low-Dropout Linear Voltage Regulator 19
3.1 Introduction 19
3.2 Devices Characteristic and Analog Parameters 21
3.2.1 Delayed saturation of TFET 21
3.2.2 Analog Parameters 22
3.3 Circuit Simulation 24
3.3.1 LDO Structure and Operation 24
3.3.2 Frequency Response 25
3.3.3 Transient Response 28
3.3.4 Power Supply Rejection Ratio (PSRR) 29
3.3.5 Performance as Supply Voltage Scaling 30
3.4 Summary 31
Chapter 4 43
Digital Linear Voltage Regulator 43
4.1 Introduction 43
4.2 Circuit Simulation 44
4.2.1 Digital Voltage Regulator Structure 44
4.2.2 Digital Error Detector (DED) 46
4.2.3 Simulation Result 47
4.3 Summary 50
Chapter 5 60
Conclusions 60
Reference 64
[1]. C. Shi, B. C. Walker, E. Zeisel, B. Hu, and G. H. McAllister, "A highly integrated power management IC for advanced mobile applications," IEEE Journal of Solid-State Circuits, vol. 42, pp. 1723-1731, 2007.

[2]. P.-F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis, et al., "Complementary tunneling transistor for low power application," Solid-State Electronics, vol. 48, pp. 2281-2286, 2004.

[3]. H. Liu, S. Datta, and V. Narayanan, "Steep switching tunnel FET: A promise to extend the energy efficient roadmap for post-CMOS digital and analog/RF applications," in Proceedings of the 2013 International Symposium on Low Power Electronics and Design, 2013, pp. 145-150.

[4]. K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering," IEEE transactions on electron devices, vol. 52, pp. 909-917, 2005.

[5]. A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, pp. 329-337, 2011.

[6]. U. E. Avci, D. H. Morris, and I. A. Young, "Tunnel field-effect transistors: Prospects and challenges," IEEE Journal of the Electron Devices Society, vol. 3, pp. 88-95, 2015.

[7]. E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, "Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications," Journal of Applied Physics, vol. 103, p. 104504, 2008.

[8]. 제품, 솔루션, and 서비스, "Double-gate tunnel FET with high- κ gate dielectric," 2007.

[9]. K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze, and I. Eisele, "Vertical tunnel field-effect transistor," IEEE Transactions on Electron Devices, vol. 51, pp. 279-282, 2004.

[10]. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, "Vertical Si-Nanowire-Type Tunneling FETs With Low Subthreshold Swing (≤50mV/decade ) at Room Temperature," IEEE Electron Device Letters, vol. 32, pp. 437-439, 2011.

[11]. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Letters, vol. 28, pp. 743-745, 2007.

[12]. V. Saripalli, S. Datta, V. Narayanan, and J. P. Kulkarni, "Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design," in Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, 2011, pp. 45-52.

[13. M. Cotter, H. Liu, S. Datta, and V. Narayanan, "Evaluation of tunnel FET-based flip-flop designs for low power, high performance applications," in Quality electronic design (ISQED), 2013 14th international symposium on, 2013, pp. 430-437.

[14]. Z. Li, J. Tan, and X. Fu, "Hybrid CMOS-TFET based register files for energy-efficient GPGPUs," in Quality Electronic Design (ISQED), 2013 14th International Symposium on, 2013, pp. 112-119.

[15]. M. Akram and B. Ghosh, "Analog performance of double gate junctionless tunnel field effect transistor," Journal of Semiconductors, vol. 35, p. 074001, 2014.

[16]. J. A. Martino, P. G. Agopian, E. Simoen, and C. Claeys, "Field effect transistors: From mosfet to Tunnel-Fet analog performance perspective," in Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on, 2014, pp. 1-4.

[17]. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, "Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation," IEEE Transactions on Electron Devices, vol. 56, pp. 2092-2098, 2009.

[18]. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, "On enhanced Miller capacitance effect in interband tunnel transistors," IEEE Electron Device Letters, vol. 30, pp. 1102-1104, 2009.

[19]. S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, "Germanium-source tunnel field effect transistors with record high I ON/I OFF," in 2009 Symposium on VLSI Technology, 2009, pp. 178-179.

[20]. B. M. Borg, K. A. Dick, B. Ganjipour, M.-E. Pistol, L.-E. Wernersson, and C. Thelander, "InAs/GaSb heterostructure nanowires for tunnel field-effect transistors," Nano letters, vol. 10, pp. 4080-4085, 2010.

[21]. U. E. Avci, D. H. Morris, S. Hasan, R. Kotlyar, R. Kim, R. Rios, et al., "Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at L g= 13nm, including P-TFET and variation considerations," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 33.4. 1-33.4. 4.

[22]. G. Dewey, B. Chu-Kung, J. Boardman, J. Fastenau, J. Kavalieros, R. Kotlyar, et al., "Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 33.6. 1-33.6. 4.

[23]. K. Moselund, H. Schmid, C. Bessire, M. Bjork, H. Ghoneim, and H. Riel, "InAs–Si nanowire heterojunction tunnel FETs," IEEE Electron Device Letters, vol. 33, pp. 1453-1455, 2012.

[24]. U. E. Avci, R. Rios, K. J. Kuhn, and I. A. Young, "Comparison of power and performance for the TFET and MOSFET and considerations for P-TFET," in Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on, 2011, pp. 869-872.

[25]. Y. Yang, G. Han, P. Guo, W. Wang, X. Gong, L. Wang, et al., "Germanium–tin p-channel tunneling field-effect transistor: Device design and technology demonstration," IEEE Transactions on Electron Devices, vol. 60, pp. 4048-4056, 2013.

[26]. C.-W. Hsu, M.-L. Fan, V. P.-H. Hu, and P. Su, "Investigation and simulation of work-function variation for III–V broken-gap heterojunction tunnel FET," IEEE Journal of the Electron Devices Society, vol. 3, pp. 194-199, 2015.

[27]. R. Kotlyar, U. Avci, S. Cea, R. Rios, T. Linton, K. Kuhn, et al., "Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors," Applied Physics Letters, vol. 102, p. 113106, 2013.

[28]. L. Liu, D. Mohata, and S. Datta, "Scaling length theory of double-gate interband tunnel field-effect transistors," IEEE Transactions on Electron Devices, vol. 59, pp. 902-908, 2012.

[29]. G. A. Rincon-Mora and P. E. Allen, "A low-voltage, low quiescent current, low drop-out regulator," IEEE Journal of Solid-State Circuits, vol. 33, pp. 36-44, 1998.

[30]. P. Hazucha, T. Karnik, B. Bloechel, C. Parsons, D. Finan, and S. Borkar, "An area-efficient, integrated, linear regulator with ultra-fast load regulation," in VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on, 2004, pp. 218-221.

[31]. E. Rogers, "Stability analysis of low-dropout linear regulators with a PMOS pass element," Analog Applications, 1999.

[32]. G. A. Rincon-Mora and P. E. Allen, "Study and design of low drop-out regulators," School of Electrical and Computer Engineering–Georgia, 1998.

[33]. A. R. Trivedi, S. Carlo, and S. Mukhopadhyay, "Exploring tunnel-FET for ultra low power analog applications: a case study on operational transconductance amplifier," in Proceedings of the 50th annual design automation conference, 2013, p. 109.

[34]. A. Mallik and A. Chattopadhyay, "Drain-dependence of tunnel field-effect transistor characteristics: the role of the channel," IEEE Transactions on Electron Devices, vol. 58, pp. 4250-4257, 2011.

[35]. G. A. Rincon-Mora and P. E. Allen, "Optimized frequency-shaping circuit topologies for LDOs," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 703-708, 1998.

[36]. M. Ho, K. N. Leung, and K.-L. Mak, "A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages," IEEE Journal of Solid-State Circuits, vol. 45, pp. 2466-2475, 2010.

[37]. R. Tantawy and E. Brauer, "Performance evaluation of CMOS low drop-out voltage regulators," in The 2004 47th Midwest Symposium on Circuits and Systems-Conference Proceedings, 2004.

[38]. V. Gupta, G. A. Rincón-Mora, and P. Raha, "Analysis and design of monolithic, high PSR, linear regulators for SoC applications," in SOC Conference, 2004. Proceedings. IEEE International, 2004, pp. 311-315.

[39]. W.-C. Hsieh and W. Hwang, "All digital linear voltage regulator for super-to near-threshold operation," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 989-1001, 2012.

[40]. P.-C. Wu, Y.-P. Kuo, C.-S. Wu, C.-T. Chuang, Y.-H. Chu, and W. Hwang, "PVT-aware digital controlled voltage regulator design for ultra-low-power (ULP) DVFS systems," in 2014 27th IEEE International System-on-Chip Conference (SOCC), 2014, pp. 136-139.

[41]. Y.-P. Kuo, P.-T. Huang, C.-S. Wu, Y.-J. Liang, C.-T. Chuang, Y.-H. Chu, et al., "All digitally controlled linear voltage regulator with PMOS strength self-calibration for ripple reduction," in VLSI Design, Automation and Test (VLSI-DAT), 2015 International Symposium on, 2015, pp. 1-4.

[42]. U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, "Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic," in VLSI technology (VLSIT), 2011 symposium on, 2011, pp. 124-125.

[43]. D. H. Morris, U. E. Avci, R. Rios, and I. A. Young, "Design of low voltage tunneling-FET logic circuits considering asymmetric conduction characteristics," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, pp. 380-388, 2014.

[44]. " Sentaurus TCAD Manual," Sentaurus Device, 2011

[45]. Tse-Ching Wu, "Investigation and Analysis of Energy-Efficient 32-Bit Carry-Look-Ahead Adder and Latch Circuits with Hybrid TFET and FinFET Devices for Ultra-Low-Vlotage Application," Master Thesis, National Chiao Tung University, 2015

[46]. Yin-Nien Chen, "Design and Analysis of Nanoscale FinFET and Tunnel FET Devices for Ultra-Low-Power SRAM, Logic and Analog Application," Doctor Dissertation, National Chiao Tung University, 2015
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊