(34.236.244.39) 您好!臺灣時間:2021/03/09 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:章晉銘
研究生(外文):Zhang, Jin-Ming
論文名稱:藉由步進式偏壓量測評估高功率氮化鎵金屬絕緣層半導體高電子遷移率電晶體之穩定性研究
論文名稱(外文):Development of an Accelerated Step-Stress Methodology for the Evaluation of the Stability of GaN-on-Si Power MIS-HEMTs
指導教授:施敏施敏引用關係張翼張翼引用關係
指導教授(外文):Sze, SimonChang, Edward Yi
口試委員:施敏張翼吳添立周武清蘇彬
口試委員(外文):Sze, SimonChang, Edward YiWu, Tian-LiChou, Wu-ChingSu, Pin
口試日期:2017-09-13
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:步進式量測氮化鎵高功率元件
外文關鍵詞:GaN MIS-HEMTsstep-stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨於藉由加速性步進式偏壓的實驗方法,去評估氮化鎵金屬-絕緣層-半導體高電子遷移率電晶體的穩定性。首先,我們使用一般常見的固定式偏壓方法,實驗在通道截止狀態與閘極負偏壓條件。然後,我們改善過去文獻中的步進式偏壓量測,可以同時監控施加偏壓下的漏電流、臨界電壓以及動態導通電阻的變化。我們利用改善過後的步進式偏壓量測,實驗在通道截止狀態、閘極負偏壓條件以及基板負偏壓條件下,分別評估元件實際的操作情況、閘極氧化層能承受偏壓的程度以及磊晶層對於元件的影響。最後,我們比較上述的兩種方法,觀察到步進式偏壓能看到固定式偏壓看不到的現象。針對此現象,我們實驗不同溫度下的通道截止狀態,並計算其活化能大小。經由活化能的計算,我們找出此現象可能來自於磊晶的淺層缺陷。此外,施加偏壓下的基板漏電流隨著溫度的上升可能源自於氮缺陷以及鎵與氧的混合物。
By means of an accelerated step-stress methodology, the stability of GaN MIS-HEMTs was evaluated. We first studied the off-state stress condition and the reverse gate bias condition by using the constant stress measurement. Then, we utilized the step-stress measurement to monitor the stress leakage current, threshold voltage and on-resistance variation. The measurements were made under : (1) the off-state step-stress condition to study the real operation of devices. (2) the reverse gate step-stress condition to study the capability and endurance of the films below the gate. (3) the back-gating step-stress condition to study the influence of the epitaxial layer. Comparing the two methodologies, we found an interesting phenomenon under off-state step-stress condition. Based on the evaluation of the activation energy, the shallow traps are responsible for the phenomenon. In addition, the increase of the bulk leakage current is due to the traps of the complexes of gallium vacancies and oxygen or/and nitrogen vacancies.
摘要 i
Abstract ii
Contents iii
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
1.1 General Background 1
1.2 Motivation 2
1.3 Thesis Content 3
Chapter 2 Literature Review 7
2.1 Basic of AlGaN/GaN HEMTs 7
2.1.1 Basic AlGaN/GaN HEMTs Structure 7
2.1.2 Two-Dimensional Electron Gas and Polarization Effect 8
2.2 Reliability issues and Failure Mechanisms of the GaN Power Electronics 11
2.3 Accelerated Step-Stress Experiments on GaN Power Devices 14
Chapter 3 Fabrication Process and Characterization Methods 24
3.1 Fabrication Process of the AlGaN/GaN MIS-HEMTs 24
3.1.1 Wafer Cleaning 25
3.1.2 Mesa Isolation 25
3.1.3 Ohmic Contact Formation 25
3.1.4 PECVD Silicon Nitride Deposition 26
3.1.5 Gate Formation 26
3.1.6 Nitride Via 26
3.1.7 PECVD-Grown Silicon Nitride Passivation 26
3.2 Characterization Methods 27
3.2.1 DC Measurements 27
3.2.2 Constant Stress Testing 27
3.2.3 Step-Stress Measurements 28
Chapter 4 Results and Discussion 37
4.1 Device Performance of D-Mode SiN/AlGaN/GaN MIS-HEMTs 37
4.2 D-mode SiN/AlGaN/GaN MIS-HEMTs by Constant Stress Measurements 38
4.2.1 Reverse Gate Stress Measurements 38
4.2.2 OFF-State Stress Measurements 38
4.3 D-mode SiN/AlGaN/GaN MIS-HEMTs by Step-Stress Measurements 39
4.3.1 OFF-State Step-Stress Measurements 39
4.3.2 Reverse Gate Step-Stress Measurements 40
4.3.3 Back-Gating Step-Stress Measurements 41
4.4 Bias- and Temperature-Assisted Trapping/De-trapping of RON Degradation in D-mode AlGaN/GaN MIS-HEMTs 41
Chapter 5 Conclusion 58
References 59
[1] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs – An overview of device operation and applications,” Proceedings of the IEEE, vol. 90, pp. 1022-1031, Jun. 2002.
[2] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Trans. Electron. Devices, vol. 48, pp. 586–590, Mar. 2001.
[3] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, pp. 465–471, Mar. 2001.
[4] Guo, Alex, and Jesús A. del Alamo. "Negative-bias temperature instability of GaN MOSFETs." Reliability Physics Symposium (IRPS), 2016 IEEE International. IEEE, 2016.
[5] Wu, Tian-Li, et al. "Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs." Reliability Physics Symposium (IRPS), 2015 IEEE International. IEEE, 2015.
[6] Sasikumar, A., et al. "Deep trap-induced dynamic on-resistance degradation in GaN-on-Si power MISHEMTs." Microelectronics Reliability 56 (2016): 37-44.
[7] Meneghini, Matteo, et al. "Buffer traps in Fe-doped AlGaN/GaN HEMTs: Investigation of the physical properties based on pulsed and transient measurements." IEEE Transactions on Electron Devices 61.12 (2014): 4070-4077.
[8] Wu, Tian-Li, et al. "Comprehensive investigation of on-state stress on D-mode AlGaN/GaN MIS-HEMTs." Reliability Physics Symposium (IRPS), 2013 IEEE International. IEEE, 2013.
[9] Joh, Jungwoo, and Jesús A. Del Alamo. "Critical voltage for electrical degradation of GaN high-electron mobility transistors." IEEE Electron Device Letters 29.4 (2008): 287-289.
[10] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. vol. 85, no. 6, pp.3223-3233, 1999.
[11] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, ” Appl Phys. Letters. 77(2), pp. 250-252, July. 2000.
[12] R. Gaska, J.W. Yang, A. Osinsky, A.D. Bykhovski, M.S. Shur,“ Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors,” Applied Physics Letter, vol. 71, pp. 3673-3675, 1997.
[13] Meneghini, Matteo, et al. "Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons." Applied Physics Letters 104.14 (2014): 143505.
[14] Iucolano, Ferdinando, et al. "Correlation between dynamic Rdsou transients and Carbon related buffer traps in AlGaN/GaN HEMTs." Reliability Physics Symposium (IRPS), 2016 IEEE International. IEEE, 2016.
[15] Chatterjee, I., et al. "Impact of buffer charge on the reliability of carbon doped AlGaN/GaN-on-Si HEMTs." Reliability Physics Symposium (IRPS), 2016 IEEE International. IEEE, 2016.
[16] Bahl, Sandeep R., et al. "New source-side breakdown mechanism in AlGaN/GaN insulated-gate HEMTs." Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on. IEEE, 2013.
[17] Meneghini, Matteo, et al. "Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage." IEEE Transactions on Electron Devices 62.3 (2015): 782-787.
[18] Lagger, Peter, et al. "Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs." Electron Devices Meeting (IEDM), 2012 IEEE International. IEEE, 2012.
[19] Meneghini, Matteo, et al. "Negative bias-induced threshold voltage instability in GaN-on-Si power HEMTs." IEEE Electron Device Letters 37.4 (2016): 474-477.
[20] Wong, King-Yuen, et al. "AlGaN/GaN MIS-HFET with improvement in high temperature gate bias stress-induced reliability." Power Semiconductor Devices & IC's (ISPSD), 2014 IEEE 26th International Symposium on. IEEE, 2014.
[21] Guo, Alex, and Jesús A. del Alamo. "Positive-bias temperature instability (PBTI) of GaN MOSFETs." Reliability Physics Symposium (IRPS), 2015 IEEE International. IEEE, 2015.
[22] Guo, Alex, and Jesús A. del Alamo. "Unified Mechanism for Positive-and Negative-Bias Temperature Instability in GaN MOSFETs." IEEE Transactions on Electron Devices 64.5 (2017): 2142-2147.
[23] Dalcanale, Stefano, et al. "GaN-based MIS-HEMTs: Impact of cascode-mode high temperature source current stress on NBTI shift." Reliability Physics Symposium (IRPS), 2017 IEEE International. IEEE, 2017.
[24] Ruzzarin, Maria, et al. "Evidence of Hot-Electron Degradation in GaN-Based MIS-HEMTs Submitted to High Temperature Constant Source Current Stress." IEEE Electron Device Letters 37.11 (2016): 1415-1417.
[25] Yeo, Kwee-Poo, and Loon-Ching Tang. "Planning step-stress life-test with a target acceleration-factor." IEEE transactions on reliability 48.1 (1999): 61-67.
[26] Nelson, Wayne. "Accelerated life testing-step-stress models and data analyses." IEEE transactions on reliability 29.2 (1980): 103-108.
[27] Demirtas, S., and Jesus A. del Alamo. "Critical voltage for electrical reliability of GaN high electron mobility transistors on Si substrate." Reliability of Compound Semiconductors Digest (ROCS), 2009. IEEE, 2009.
[28] R. Williams, “Modern GaAs Processing Methods,” Artech House, Inc., 1991.
[29] P. Moens, A. Banerjee, P. Coppens, F. Declercq and M. Tack, “AlGaN/GaN Power Device Technology for High Current (100+ A) and High Voltage (1.2 kV)”, in Proc. Int. Symp. Power Semiconductor Devices and IC’s (ISPSD), pp. 455-458, 2016.
[30] K.-Y. Roy. Wong et al., “A Next Generation CMOS-Compatible GaN-on-Si Transistors for High Efficiency Energy Systems,” in Proc. IEEE Int. Electron Device Meeting (IEDM), pp. 9.5.1-9.5.4, 2015.
[31] M. Meneghini, D. Bisi, D. Marcon, S. Stoffels, M. Van Hove, T.-L. Wu, S. Decoutere, G. Meneghesso, and E. Zanoni, “Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications,” IEEE Trans. on Power Electronics, pp. 2199-2207, Vol. 29, No. 5, May 2014.
[32] S. Stoffels, M. Zhao, R. Venegas, P. Kandaswamy, S. You, T. Novak, Y. Saripalli, M. Van Hove, S. Decoutere, “The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion,” in Proc. IEEE Int. Electron Device Meeting (IEDM), pp. 35.4.1-35.4.4, 2015.
[33] Stuchliková, Ľ., et al. "Investigation of deep energy levels in heterostructures based on GaN by DLTS." Advanced Semiconductor Devices & Microsystems (ASDAM), 2010 8th International Conference on. IEEE, 2010.
[34] Johnstonea, Daniel K., et al. "Deep Centers and Their Capture Barriers in MOCVD-Grown GaN." MRS Online Proceedings Library Archive 692 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔