(3.237.178.91) 您好!臺灣時間:2021/03/04 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘信丞
研究生(外文):Pan, Hsin-Cheng
論文名稱:使用非同步數位控制器與脈衝寬度調變接收器之毫米波被動式RFID電子標籤IC
論文名稱(外文):An Asynchronous Digital Controller and a PWM Receiver for Millimeter-Wave RFID Passive Tag IC
指導教授:王毓駒
指導教授(外文):Wang, Yu-Jiu
口試日期:2017-09-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:53
中文關鍵詞:射頻辨識電子標籤無線傳電脈衝寬度調變
外文關鍵詞:RFID TagWireless Power TransferPulse-Width Modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
無線射頻識別系統(RFID)是本世紀的一個重要技術項目之一,相對於接觸式系統,RFID提供了一個更加方便的模式來改善我們的生活,舉凡電子通行證、電子收費系統、商品標籤、物聯網等方面都會使用到RFID的技術。本篇論文會探討RFID標籤(Tag)的設計,針對電子標籤的便利性以及應用的廣泛性,我們將此RFID Tag設計為全被動式且操作頻率為35 GHz,放眼未來我們個人所用的RFID Tag可能會變成數以百計的數量,考量到當每個RFID沒電時,一一更換電池是一件極其麻煩的事情,因此我們設計了全被動式的RFID Tag,同時為了提高RFID系統應用的廣泛性,我們試圖縮小整個RFID Tag的尺寸,因為RFID Tag無法裝在比自身體積要小的物體上,也因此我們選用較高頻的頻段來設計此RFID Tag。本篇論文所提出的RFID Tag使用了35 GHz下行與上行操作頻率,以達到縮小天線面積的效果。對於全被動式的RFID來說,Energy Harvesting以及各個子電路的功耗與對供應電源之敏感度是一大重要考量,此篇論文將會提及此RFID內部各個子電路的運作模式,且詳述非同步數位控制器以及脈衝寬度調變接收器的部分。
Radio-Frequency identification (RFID) system is a significant technical project in this century. Comparing with the contact system, RFIDs give people a better way to improve their quality of life. There are many things may use the RFID technique such as access cards, electronic toll collection, product tags, Internet of Things (IoT), etc. Considering that the RFID tag IC design is targeted at convenience and universality of RFID applications, we design the RFID tag IC with full passive topology at 35 GHz. Since there may be hundreds of RFID tags used by individuals, it takes very long time to reload or recharge each battery. As a result, we design the full-passive RFID tag IC. On the other hand, decreasing the size of a RFID tag will increase the variety of RFID applications because a tag cannot be mounted on objects smaller than itself. As a consequence, our design is targeted at the high operating frequency to reduce the antenna size. For the proposed RFID tag in this thesis, the downlink/uplink operating frequency of 35/35 GHz is used to reduce the antenna size. Since the proposed tag is full-passive, the energy harvesting, the power consumption and the supply sensitivity will be the critical points. This thesis will show the operation flow of the proposed RFID tag and describe the Asynchronous Digital Controller and PWM Receiver in detail.
1 Introduction 1
2 A Millimeter-Wave RFID Passive Tag IC 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 Operating Principle of The Proposed RFID Tag IC . . . . . . . . . . . . . .5
2.2.1 Operating Principle in System Level . . . . . . . . . . . . . . . . . .5
2.2.2 Energy Harvester . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2.3 Power Management Unit . . . . . . . . . . . . . . . . . . . . . . . . .10
2.2.4 Asynchronous Digital Controller . . . . . . . . . . . . . . . . . . . . .12
2.2.5 35 GHz PWM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.2.6 35 GHz PWM Transmitter . . . . . . . . . . . . . . . . . . . . . . . .14
2.3 RFID Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3 An Asynchronous Digital Controller 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.2 Asynchronous Digital Controller . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.2 Asynchronous State Machine . . . . . . . . . . . . . . . . . . . . . . .28
vi
3.2.3 Modication for Stabilization . . . . . . . . . . . . . . . . . . . . . .31
3.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
4 A 35-GHz PWM Receiver 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
4.2 Circuit Techniques Implemented in PWM Receiver . . . . . . . . . . . . . .36
4.3 35 GHz PWM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.3.1 Envelope Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.3.2 Integrator and Sampler . . . . . . . . . . . . . . . . . . . . . . . . . .40
4.3.3 Bandgap Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4.3.4 Preamble Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
5 Conclusion 50
Bibliography 52
[1]M. Bhuptani and S. Moradpour, \RFID eld guide: deploying radio frequency identication systems:" Prentice Hall PTR, 2005.
[2]K. Finkenzeller, \RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identication and near-eld communication:" Wiley, 2010.
[3]R. Want, "An introduction to RFID technology," Pervasive Computing, IEEE, vol. 5, no. 1, pp. 25-33, Jan.-Mar. 2006.
[4]Y. J. Wang, I. N. Liao, C. H. Tsai and C. Pakasiri, \A Millimeter-Wave In-Phase GateBoosting Rectier," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2768-2783, Nov. 2014.
[5]J. Dickson, \On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique," IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374-378, Jun. 1976.
[6]M. Seok, G. Kim, D. Blaauw and D. Sylvester, "A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V," IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2534-2545, Oct. 2012.
[7]Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, "Digital Logic Circuit Analysis and Design," Prentice-Hall, 1995.
[8]B. van Liempd et al., "A 3W fully-dierential RF envelope detector for ultra-low power receivers," 2012 IEEE International Symposium on Circuits and Systems, pp. 14961499,
May 2012.
[9]K. Ueno, T. Hirose, T. Asai and Y. Amemiya, "A 300 nW, 15 ppm/ C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs," IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 2047-2054, July 2009.
[10]M. Tabesh, N. Dolatsha, A. Arbabian and A. M. Niknejad, "A Power-Harvesting PadLess Millimeter-Sized Radio," IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 962-977, April 2015.
[11]H. Gao, M. Matters-Kammerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, and P. Baltus, \A 71 GHz RF energy harvesting tag with 8% eciency for wireless temperature sensors in 65nm CMOS," in Proc. IEEE Radio Frequency Integr. Circuits Symp., Jun. 2013, pp. 403-406.
[12]S. Pellerano, J. Alvarado, and Y. Palaskas, \A mm-wave power-harvesting RFID tag in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1627-1637, Aug. 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔