(54.236.58.220) 您好!臺灣時間:2021/02/27 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉南廷
研究生(外文):Yeh, Nan-Ting
論文名稱:應用於毫米波被動式射頻辨識電子標籤之高敏感度射頻能量攫取器
論文名稱(外文):A RF Energy Harvester for High Sensitivity Applied to mm-Wave Passive RFID Tag IC
指導教授:王毓駒
指導教授(外文):Wang, Yu-Jiu
口試委員:陳柏宏朱大舜
口試委員(外文):Chen, Po-HungChu, Ta-Shun
口試日期:2017-09-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:射頻能量攫取器毫米波被動式電子標籤射頻辨識
外文關鍵詞:Radio FrequencyEnergy HarvesterMillimeter WavePassive TagsRFID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
物聯網的概念最早於1990年代被提出來,近年來由於無線通訊技術的演進讓物聯網開始變得熱門,進一步激發我們對於未來生活有了新想像。實現物聯網主要技術在於射頻辨識系統(簡稱RFID系統),而RFID系統已經發展一段時日,應用於許多生活中像是ID卡、存取控制、電子通行收費等。在RFID系統中,RFID電子標籤扮演一個關鍵角色。目前常見的RFID電子標籤運作在特高頻段(902-928MHz),因為運作頻段的緣故,此類電子標籤採用的晶片外天線之體積和尺寸相對較大。為了縮小RFID電子標籤整體體積,將電子標籤的運作頻段抬升是一個顯然的發展方向。然而,一旦運作頻段上升,電磁波傳遞過程中的能量消耗會變大。因此,尤其針對全被動式RFID電子標籤,能量攫取的研究主題吸引了許多關注和興趣。
在此篇論文中,以同相位閘極增益整流器為基礎,提出一個強化能量攫取的創新電路架構,此電路架構額外包含了電源管理器和直流升壓轉換器,希望可以推進能量攫取器之整體敏感度。進一步此能量攫取器將會整合進35GHz全被動式RFID電子標籤,希望可以達到RF對DC轉換效率增加和低功耗無電池之標籤系統運作。
The concept of Internet of Things (IOT) was proposed first in 1990s. IOT has become popular in recent years because the evolution on wireless communication prompts people to envision a new life with IOT in the future. The main technology to realize IOT is the radio frequency identification (RFID) system which is well-developed and applied on such as ID cards, access control, and electronic toll collection in the past years. In the RFID system, a RFID tag plays a critical role and it needs to operate driven by a power source. Current RFID tags operate in the UHF frequency band (902-928MHz) and have a larger physical size due to the off-chip antenna which is corresponding the operation frequency. In order to shrink down the tag size, raising the operation frequency is an obvious development direction. However, the power loss of the electromagnetic wave becomes larger with the increase of the operation frequency. Especially for passive battery-less RFID tags, the energy harvesting issue has attracted increasing attention and interests. In this thesis, based on the in-phase gate-boosting rectifier design [Wang 2014], a novel circuitry structure of energy harvester including a power-on reset circuit and a boost converter is proposed to improve the sensitivity for the energy scavenging with 35-GHz RF input power. Further, this energy harvester is utilized on a 35-GHz passive RFID tag to target the main two issues: 1. Performance of RF-DC conversion. 2. Low power battery-less system operation.
1 Introduction 1

2 A RF Energy Harvester for High Sensitivity 4

2.1 Introduction . . . . . . . . . . . . . . . .. . . . 4

2.2 Operation of The Proposed RF Energy Harvester . .. 6

2.3 Boost Converter Design . . . . . . . . . . .. . . . 8

2.4 Power-On Reset Design: Target 300-mV Level . .. . 11

2.5 Summary . . . . . . . . . . . . . . . . . . . . . 15

3 A Millimeter-Wave RFID Tag IC 16

3.1 Introduction . . . . . . . . . . . . . . . . . . 16

3.2 Operating Principle of the Proposed RFID Tag IC . .17

3.2.1 Operational Principle in System Level . . .. . . 17

3.2.2 RF Energy Harvester . . . . . . . . . . . .. . . 18

3.2.3 35-GHz PWM Receiver . . . . . . . . . . . . . . 19

3.2.4 Power Management Unit . . . . . . .. . . . . . . 20

3.2.5 Asynchronous Digital Controller . . . . . . . . 20

3.2.6 35-GHz PWM Transmitter . . . . . . . . . . . . 21

3.3 Power Management with the Proposed Dual-Mode Power-On Reset . . . . . 22

3.4 Summary . . . . . . . . . . . . . . .. . . . . . . 26

4 Measurement Resullts 27

4.1 Introduction . . . . . . . . . . . . . . . . . . 27

4.2 Energy Harvester Measurement . . . .. . . . . . . 29

4.2.1 IGR . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Boost Converter . . . . . . . . . .. . . . . . . 34

4.2.3 Power-on Reset . . . . . . . . . . . . . . . . 36

4.2.4 Proposed RF Energy Harvester . . . . . . . . . 38

4.3 Passive RFID Tag Measurement . . . . . .. . . . . 40

4.3.1 Dual-Mode Power-on Reset . . . . . . .. . . . . 40

4.3.2 RFID Tag System Measurement . . . . . . . . . . 44

5 Conclusion 47

Bibliography 50
[1] S. Pellerano, Jr. Javier Alvarado, and Y. Palaskas, “A mm-Wave Power-Harvesting
RFID Tag in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp1627-1637,
Aug. 2010.

[2] J. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an
improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. 11, no. 3, pp.
374-378, Jun. 1976.

[3] Y.J. Wang, I.N. Liao, C.H. Tsai, and C. Pakasiri, “A Millimeter-Wave In-Phase Gate-
Boosting Rectier,” IEEE Trans. Microwave Theory and Techniques, vol. 62, no. 11,
pp2768-2783, Nov. 2014.

[4] M.F. Fu, C.B. Ma, and X.E. Zhu, “A Cascaded Boost-Buck Converter for High-Efciency
Wireless Power Transfer Systems,” IEEE Trans. On Industrial Informatics, vol. 10, no.
3, pp1972-1980, Aug. 2014.

[5] P.H. Hsieh, C.H. Chou, and T. Chiang, “An RF Energy Harvester With 44.1% PCE at
Input Available Power of -12 dBm,” IEEE Trans. On Circuit And Systems-I: Regular
Papers, vol. 62, no. 6, pp1528-1537, Jun. 2015.

[6] E. J. Carlson, K. Strunz, and B. P. Otis, “A 20 mV Input Boost Converter With Efficient
Digital Control for Thermoelectric Energy Harvesting,” IEEE J. Solid-State Circuits,
vol. 45, no. 4, pp. 741-750, Apr. 2010.

[7] M. K. Kazimierczuk, “Pulse-width Modulated DC-DC Power Converters,” Wiley, 2008.

[8] M. Seok, G. Kim, D. Blaauw and D. Sylvester, “A Portable 2-Transistor Picowatt
Temperature-Compensated Voltage Reference Operating at 0.5 V,” IEEE J. Solid-State
Circuits, vol. 47, no. 10, pp. 2534-2545, Oct. 2012.

[9] J. Zhou, C. Wang, X. Liu, X. Zhang, and M. Je, “An Ultra-Low Voltage Level Shifter
Using Revised Wilson Current Mirror for Fast and Energy-Efcient Wide-Range Voltage
Conversion from Sub-Threshold to I/O Voltage,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 62, no. 3, pp697-706, Mar. 2015.

[10] H. Gao, M. Matters-Kammerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roer-
mund, and P. Baltus , “A 71GHz RF Energy Harvesting Tag with 8% Efficiency for
Wireless Temperature Sensors in 65nm CMOS,” in Proc. IEEE Radio Freq. Integr. Cir-
cuits Symp., Jun. 2013, pp. 403-406.

[11] S. Kawai, T. Mitomo, and S. Saigusa, “A 60GHz CMOS Rectifier with -27.5dBm Sensi-
tivity for mm-Wave Power Detection,” Solid State Circuits Conference (A-SSCC), 2012
IEEE Asian, pp. 281-284, 12-14 Nov. 2012.

[12] M. Tabesh, N. Dolatsha, A. Arbabian and A. M. Niknejad, “A Power-Harvesting Pad-
Less Millimeter-Sized Radio,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 962-977,
Apr. 2015.

[13] H. Dagan, A. Shapira, A. Teman, A. Mordakhay and S. Jamesonet et al. , “A Low-
Power Low-Cost 24 GHz RFID Tag With a C-Flash Based Embedded Memory,” IEEE
J. Solid-State Circuits, vol. 49, no. 9, pp. 1942-1957, Sep. 2014.
電子全文 電子全文(網際網路公開日期:20220917)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔