|
References W. Hollingworth, C. J. Todd, M. I. Bell, et al., “The diagnostic and therapeutic impact of MRI: an observational multi-centre study,” Clin. Radiol., Nov. 2000, pp. 825-831. S. P. Fitzgibbon, T. W. Lewis, D. M. Powers, E. W. Whitham, J. O. Willoughby, and K.J. Pope, “Surface laplacian of central scalp electrical signals is insensitive to muscle contamination,” IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 4-9, 2013. P. M. Shenoy, K. J. Miller, J. G. Ojemann, and R. P. N. Rao, “Generalizable features for electrocorticographic BCIs,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 273-280, Jan. 2008. P. H. Pechham and J. S. Kuntson, “Functional electrical stimulation for neuromuscular application,” Annu. Rev. Biomed. Eng., vol. 7, pp. 327-360, Aug. 2005. K.-Y. Lin, M.-D. Ker, and C.-Y. Lin “A high-voltage-tolerant stimulator realized in the low-voltage CMOS process for cochlear implant,” in Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 237-240. Y.-K. Lo et al., “A fully-integrated high-compliance voltage SoC for epiretinal and neural prostheses,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 6, pp. 761-772, Dec. 2013. Q. Xu, J. Li and H. Zhou, “A fully implantable stimulator with wireless power and data transmission for experimental use in epidural spinal cord stimulation,” in Proc. IEEE Eng. Med. Bio. Conf., pp. 7230-7233, 2011. W.-M. Chen, et al., “A fully-integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 232-247, Jan. 2014. H. Kassiri, et al., “Battery-less tri-band-radio neuro-monitor and responsive neurostimulator for diagnostics and treatment of neurological disorders,” IEEE J. Solid-State Circuits, vol. 51, no. 55, pp. 1274-1289, May 2016. S. Little, et al., “Adaptive deep brain stimulation in advanced Parkinson disease,” Ann. Neurol., vol. 74, no. 3, pp. 449-457, Jul. 2013. A. A. Kuhn, et al., “High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance,” J. Neurosci., vol. 28, pp. 6165-6173, Jul. 2008. S. Little, et al., “What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?,” Ann. N. Y. Acad. Sci., vol. 1265, pp. 9-24, Aug. 2012. C.-Y. Wu et al., “Design considerations and clinical applications of closed-loop neural disorder control SoCs,” in Proc. IEEE Conference on Design Automation, 2017, pp. 295-298. E. R. Kandl, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth, Princples of Neural Science, New Yout, NY, USA: McGraw-Hill Education, 2012. B. C. H. Tsui, Atlas of Ultrasound- and Nerve Stimulation-Guided Regional Anesthesia, New Yout, NY, USA: Springer, 2008. M. Sivaprakasam, W. Liu, G. Wang, J. Weiland, and M. Humayum, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Trans. Circuit Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2629-2641, Dec. 2005. H. Gui, Y. Xia, F. Liu, X. Liu, S. Dai, L. Lei, and Y. Wang, “Based on the time-frequency analysis to distinguish different epileptiform EEG signals,” in Proc. ICBBE Bioinf. Biomed. Eng. Conf., 2009, pp. 1-4. S. F. Cogan, “Neural stimulation and recording electrodes,” Auun. Rev. Biomed. Eng., vol. 10, pp. 275-309, May 2008. G. Deli et al., “Comparison of the efficacy of unipolar and bipolar electrode configuration during subthalamic deep brain stimulation,” Parkinsonism Relat. Disorder, vol. 17, pp. 50-54, Jan. 2011. G. A. Vilos and C. Rajakumar, “Electrosurgical generators and monopolar and bipolar electrosurgery,” J. Minim. Invasive Gynecol., vol. 20, pp. 279-287, May 2013. B. Piallat et al., “Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation,” Neurosurgery, vol. 64, pp. 156-163, Jan. 2009. T.-Y. Yen, “Design of dual-mode stimulus system for epileptic seizure suppression,” M.S. thesis, EE, NCTU, Hsinchu, Taiwan, 2016. S. Guo and H. Lee, “Biphasic-current-pulse self-calibration techniques for monopolar current stimulation,” in Proc. IEEE Biomedical Circuits and Systems Conference, 2009, pp. 61-64. S.-C. Ku, “Design of mono-polar biphasic stimulus driver to suppress epileptic seizure in 0.18μm 1.8V/3.3V CMOS process,” M.S. thesis, EE, NCTU, Hsinchu, Taiwan, 2013. S. Ethier, M. Sawan, E. Aboulhamid, and M. El-Gamal, “A ±9V fully integrated CMOS electrode driver for high-impedance microstimulation,” in Proc. IEEE Int. 52nd Midwest Symp. Circuits Syst., 2009, pp. 192-195. G. I. Radulov, P. J. Quinn, P. C. W. van Beek, J. A. Hegt, and A. H. M. van Roermund, “A binary-to-thermometer decoder with built-in redundancy for improved DAC yield,” in Proc. IEEE Int. Symp. Circuits Syst., 2006, pp. 1414-1417. B.G. Song, O.J. Kwon, I.K. Chang, H.J. Song and K.D. Kwack, “A 1.8 v self-biased complementary folded cascode amplifier,” in Proc. IEEE Conference on Asia Pacific Conference on, 1999, pp. 63-65. R. J. E. Jansen, J. Haanstra and D. Sillars, “Complementary constant-g_m biasing of Nauta-transconductors in low-power g_m-C filters to ±2% accuracy over temperature,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1585-1594, Jul. 2013. D. B. Mccreery, W. F. Agnew, T. G. H. Yuen, and L. Bullara, “Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation,” IEEE Trans. Biomed. Eng., vol. 37, no. 10, pp. 996-1001, Oct. 1990. T. L. Rose and L. S. Robblee, “Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2ms pulses” IEEE Trans. Biomed. Eng., vol. 37, no. 11, pp. 1118-1120, Nov. 1990. S. Gallego, E. Truy, A. Morgon, and L. Collet, “EABRs and surface potentials with a transcutaneous mutielectrode cochlear implant, ” Acta Otolaryngologica, vol. 117, no. 2, pp. 164-168, Mar. 1997. C. Honert and P. H. Stypulkowski, “Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans,” Hear. Res. vol. 21, pp. 109-126, Oct. 1985. C. A. Miller, K. E. Woodruff, and B. E. Pfingst, “Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures” Hear. Res. vol. 92, pp. 85-99, Dec. 1995. C. A. Miller, M. J. Faulkner, B. E. Pingst, “Functional responses from guinea pigs with cochlear implants. II. Changes in electrophysiological and psychophysical measures over time” Hear. Res. vol. 92, pp. 100-111, Dec. 1995. E. Maghsoudloo, M. Rezaei, M. Sawan, and B. Gosselin, “A new charge balancing scheme for electrical microstimulators based on modulated anodic stimulation pulse width, ” in Proc. IEEE Int. Symp. Circuits Syst., 2016, pp. 2443-2446. D. K. L. Peterson, “Field augmented current steering using voltage sources”, US 9446239, Sep. 2016. (Boston Scientific Neuromodulation Corporation) S. A. Hareland, “Filter circuit with variable capacitance for use with implantable medical devices”, US 0147135, Jun. 2008. (Medtronic INC.) X. Liu, A. Demosthenousm, and N. Donaldson, “An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors,” IEEE Trans. Biomed. Circuits Syst, vol. 2, no. 3, pp. 231-244, Sep. 2008. X. Liu, A. Demosthenousm, and N. Donaldson, “An integrated stimulator with DC-isolation and fine current control for implanted nerve tripoles,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1701-1714, Jul. 2011. I. Williams and T. Constandinou, “An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 2, pp. 129-139, Apr. 2013. M. Ortmanns, A. Rocke, M. Gehrke, and H. J. Tiedtke, “A 232-channel epiretinal stimulator ASIC,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2946-2959, Dec. 2007. K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “An integrated 256-channel epiretinal prosthesis,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1946-1956, Sep. 2010.
|