|
[1] C.F. Klingshirn, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Berlin Heidelberg, 2010. [2] Z.L. Wang, Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology, ACS Nano, 2 (2008) 1987-1992. [3] M. Chaari, A. Matoussi, Electrical conduction and dielectric studies of ZnO pellets, Physica B: Condensed Matter, 407 (2012) 3441-3447. [4] X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nature Materials, 15 (2016) 383-396. [5] O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nature Materials, 4 (2009) 592-597. [6] Z.L. Wang, FUNCTIONAL OXIDE NANOBELTS: Materials, Properties and Potential Applications in Nanosystems and Biotechnology, Annual Review of Physical Chemistry, 55 (2004) 159-196. [7] V. Modepalli, M.-J. Jin, J. Park, J. Jo, J.-H. Kim, J.M. Baik, C. Seo, J. Kim, J.-W. Yoo, Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires, ACS Nano, 10 (2016) 4618-4626. [8] B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-Related Emissions and Magnetization Properties of ZnO Nanorods, Advanced Functional Materials, 20 (2010) 1161-1165. [9] S.B. Singh, Y.-F. Wang, Y.-C. Shao, H.-Y. Lai, S.-H. Hsieh, M.V. Limaye, C.-H. Chuang, H.-C. Hsueh, H. Wang, J.-W. Chiou, H.-M. Tsai, C.-W. Pao, C.-H. Chen, H.-J. Lin, J.-F. Lee, C.-T. Wu, J.-J. Wu, W.-F. Pong, T. Ohigashi, N. Kosugi, J. Wang, J. Zhou, T. Regier, T.-K. Sham, Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques, Nanoscale, 6 (2014) 9166-9176. [10] K.D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots, CRC Press, 2016. [11] M. Henini, Molecular Beam Epitaxy: From Research to Mass Production, Elsevier Science, 2012. [12] D.S. Ginley, H. Hosono, D.C. Paine, Handbook of Transparent Conductors, Springer US, 2010. [13] L. Pauling, The chemical bond: a brief introduction to modern structural chemistry, Cornell University Press, 1967. [14] U. Rössler, R. Blachnik, J. Chu, R.R. Galazka, J. Geurts, J. Gutowski, B. Hönerlage, D. Hofmann, J. Kossut, R. Levy, II-VI and I-VII Compounds; Semimagnetic Compounds: Supplement to Vols. III/17b, 22a (Print Version) Revised and Updated Edition of Vols. III/17b, 22a (CD-ROM), Springer Berlin Heidelberg, 1999. [15] E.H. Kisi, M.M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallographica Section C, 45 (1989) 1867-1870. [16] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, 53 (1996) 11425-11438. [17] M. Tadatsugu, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, 20 (2005) S35. [18] J. Meyer, P. Görrn, S. Hamwi, H.-H. Johannes, T. Riedl, W. Kowalsky, Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition, Applied Physics Letters, 93 (2008) 073308. [19] D.K. Schroder, Semiconductor Material and Device Characterization, Wiley, 2006. [20] D.C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B, 80 (2001) 383-387. [21] D.C. Look, J.W. Hemsky, J.R. Sizelove, Residual Native Shallow Donor in ZnO, Physical Review Letters, 82 (1999) 2552-2555. [22] G.W. Tomlins, J.L. Routbort, T.O. Mason, Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide, Journal of Applied Physics, 87 (2000) 117-123. [23] C.G. Van de Walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, 85 (2000) 1012-1015. [24] C.G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions, Nature, 423 (2003) 626-628. [25] M. Seung Yeop, B. Seung Jae, L. Chang Hyun, C. Woo Young, L. Koeng Su, Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using A l C l 3 (6 H 2 O ) as New Doping Material, Japanese Journal of Applied Physics, 36 (1997) L1078. [26] H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy, Applied Physics Letters, 77 (2000) 3761-3763. [27] H.B. Lee, R.T. Ginting, S.T. Tan, C.H. Tan, A. Alshanableh, H.F. Oleiwi, C.C. Yap, M.H.H. Jumali, M. Yahaya, Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement, 6 (2016) 32645. [28] P. Banerjee, W.-J. Lee, K.-R. Bae, S.B. Lee, G.W. Rubloff, D.J. N., G.T. A., W.D. M., B.T. M., Y. M., T. B., C.T. J., Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, 108 (2010) 043504. [29] C.H. Ahn, S.Y. Lee, H.K. Cho, Influence of growth temperature on the electrical and structural characteristics of conductive Al-doped ZnO thin films grown by atomic layer deposition, Thin Solid Films, 545 (2013) 106-110. [30] G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, M. Godlewski, Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications, Journal of Materials Science: Materials in Electronics, 22 (2011) 1810-1815. [31] Y. Li, R. Yao, H. Wang, X. Wu, J. Wu, X. Wu, W. Qin, Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn–Al–O Interfaces Fabricated by Atomic Layer Deposition, ACS Applied Materials & Interfaces, 9 (2017) 11711-11720. [32] S. Blundell, Magnetism in Condensed Matter, OUP Oxford, 2001. [33] J.K. Furdyna, Diluted magnetic semiconductors, Journal of Applied Physics, 64 (1988) R29-R64. [34] D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, B. Barbara, D. Dufeu, Carrier-induced ferromagnetism in p−Zn1−xMnxTe, Physical Review B, 63 (2001) 085201. [35] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic, Science, 281 (1998) 951. [36] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, H. Koinuma, Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, Science, 291 (2001) 854. [37] K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Applied Physics Letters, 79 (2001) 988-990. [38] S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−δ, Physical Review Letters, 91 (2003) 077205. [39] S.N. Kale, S.B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V.N. Kulkarni, R.L. Greene, T. Venkatesan, Magnetism in cobalt-doped Cu2O thin films without and with Al, V, or Zn codopants, Applied Physics Letters, 82 (2003) 2100-2102. [40] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, 287 (2000) 1019-1022. [41] M.A. García, M.L. Ruiz-González, A. Quesada, J.L. Costa-Krämer, J.F. Fernández, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martín-González, M. Villegas, F. Briones, J.M. González-Calbet, A. Hernando, Interface Double-Exchange Ferromagnetism in the Mn-Zn-O System: New Class of Biphase Magnetism, Physical Review Letters, 94 (2005) 217206. [42] D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system, Nature Materials, 3 (2004) 709-714. [43] M. Snure, D. Kumar, A. Tiwari, Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic?, Applied Physics Letters, 94 (2009) 012510. [44] X. Zhang, Y.H. Cheng, L.Y. Li, H. Liu, X. Zuo, G.H. Wen, L. Li, R.K. Zheng, S.P. Ringer, Evidence for high-Tc ferromagnetism in Znx(ZnO)1−x granular films mediated by native point defects, Physical Review B, 80 (2009) 174427. [45] T.-L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, S.C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Applied Physics Letters, 102 (2013) 072408. [46] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Materials, 4 (2005) 173-179. [47] T. Suntola, J. Hyvarinen, Atomic Layer Epitaxy, Annual Review of Materials Science, 15 (1985) 177-195. [48] T. Tommi, K. Maarit, Atomic layer deposition of ZnO: a review, Semiconductor Science and Technology, 29 (2014) 043001. [49] N.Y. Yuan, S.Y. Wang, C.B. Tan, X.Q. Wang, G.G. Chen, J.N. Ding, The influence of deposition temperature on growth mode, optical and mechanical properties of ZnO films prepared by the ALD method, Journal of Crystal Growth, 366 (2013) 43-46. [50] J. Malm, E. Sahramo, J. Perälä, T. Sajavaara, M. Karppinen, Low-temperature atomic layer deposition of ZnO thin films: Control of crystallinity and orientation, Thin Solid Films, 519 (2011) 5319-5322. [51] E.B. Yousfi, J. Fouache, D. Lincot, Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry, Applied Surface Science, 153 (2000) 223-234. [52] S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H.J. Chang, H.-H. Park, Structural and Electrical Properties of ZnO Thin Films Deposited by Atomic Layer Deposition at Low Temperatures, Journal of The Electrochemical Society, 155 (2008) H738-H743. [53] P. Swee-Yong, C. Kwang-Leong, H. Xianghui, S. Chongxin, Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19 (2008) 435609. [54] J.W. Elam, Z.A. Sechrist, S.M. George, ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements, Thin Solid Films, 414 (2002) 43-55. [55] J.W. Elam, S.M. George, Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques, Chemistry of Materials, 15 (2003) 1020-1028. [56] K. Sang Jik, Effect of Precursor-Pulse on Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition, Japanese Journal of Applied Physics, 44 (2005) 1062. [57] N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, F.B. Prinz, Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity, Chemistry of Materials, 22 (2010) 4769-4775. [58] W.J. Maeng, L. Jae-won, L. Ju Ho, C. Kwun-Bum, P. Jin-Seong, Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures, Journal of Physics D: Applied Physics, 44 (2011) 445305. [59] J.W. Elam, D. Routkevitch, S.M. George, Properties of ZnO / Al2 O 3 Alloy Films Grown Using Atomic Layer Deposition Techniques, Journal of The Electrochemical Society, 150 (2003) G339-G347. [60] J.-S. Na, Q. Peng, G. Scarel, G.N. Parsons, Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-Doped ZnO, Chemistry of Materials, 21 (2009) 5585-5593. [61] Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai, J. Liu, Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates, Journal of Alloys and Compounds, 718 (2017) 161-169. [62] O. Madelung, Semiconductors: Data Handbook, Springer Berlin Heidelberg, 2012. [63] Z.B. Bahşi, M.H. Aslan, M. Ozer, A.Y. Oral, Sintering behavior of ZnO:Al ceramics fabricated by sol-gel derived nanocrystalline powders, Crystal Research and Technology, 44 (2009) 961-966. [64] K. Prabakar, C. Kim, C. Lee, UV, violet and blue-green luminescence from RF sputter deposited ZnO:Al thin films, Crystal Research and Technology, 40 (2005) 1150-1154. [65] T.-Y. Chiang, C.-L. Dai, D.-M. Lian, Influence of growth temperature on the optical and structural properties of ultrathin ZnO films, Journal of Alloys and Compounds, 509 (2011) 5623-5626. [66] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, Effect of post-heat treatment on the electrical and optical properties of ZnO:Al thin films, Thin Solid Films, 502 (2006) 219-222. [67] B.-Y. Oh, J.-H. Kim, J.-W. Han, D.-S. Seo, H.S. Jang, H.-J. Choi, S.-H. Baek, J.H. Kim, G.-S. Heo, T.-W. Kim, K.-Y. Kim, Transparent conductive ZnO:Al films grown by atomic layer deposition for Si-wire-based solar cells, Current Applied Physics, 12 (2012) 273-279. [68] S.J. Lim, S. Kwon, H. Kim, ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor, Thin Solid Films, 516 (2008) 1523-1528. [69] C.R. Ellinger, S.F. Nelson, Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone), Chemistry of Materials, 26 (2014) 1514-1522. [70] Y.-M. Chang, M.-L. Lin, T.-Y. Lai, H.-Y. Lee, C.-M. Lin, Y.-C.S. Wu, J.-Y. Juang, Field Emission Properties of Gold Nanoparticle-Decorated ZnO Nanopillars, ACS Applied Materials & Interfaces, 4 (2012) 6676-6682. [71] D.K. Kim, H.B. Kim, Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure, Journal of Alloys and Compounds, 509 (2011) 421-425. [72] S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, 287 (2006) 78-84. [73] S.-H. Wei, S.B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, Journal of Applied Physics, 87 (2000) 1304-1311. [74] W.Y. Liang, A.D. Yoffe, Transmission Spectra of ZnO Single Crystals, Physical Review Letters, 20 (1968) 59-62. [75] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, 78 (2001) 407-409. [76] Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Applied Physics Letters, 83 (2003) 1689-1691. [77] T.S. Moss, The Interpretation of the Properties of Indium Antimonide, Proceedings of the Physical Society. Section B, 67 (1954) 775. [78] S.-M. Park, T. Ikegami, K. Ebihara, P.-K. Shin, Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Applied Surface Science, 253 (2006) 1522-1527. [79] Z. Baji, Z. Lábadi, Z.E. Horváth, I. Bársony, Structure and morphology of aluminium doped Zinc-oxide layers prepared by atomic layer deposition, Thin Solid Films, 520 (2012) 4703-4706. [80] P. Banerjee, W.-J. Lee, K.-R. Bae, S.B. Lee, G.W. Rubloff, Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, 108 (2010) 043504. [81] P. Genevée, F. Donsanti, G. Renou, D. Lincot, Study of the aluminum doping of zinc oxide films prepared by atomic layer deposition at low temperature, Applied Surface Science, 264 (2013) 464-469. [82] T. Ocal, S. Yusuf, A. Gulnur, O. Lutfi, High quality ITO thin films grown by dc and RF sputtering without oxygen, Journal of Physics D: Applied Physics, 43 (2010) 055402. [83] D. Kudryashov, A. Gudovskikh, K. Zelentsov, Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering, Journal of Physics: Conference Series, 461 (2013) 012021. [84] Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, Structural and morphological properties of ITO thin films grown by magnetron sputtering, Journal of Theoretical and Applied Physics, 9 (2015) 285-290. [85] M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, J.M. Pearce, Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films, AIP Advances, 5 (2015) 017128. [86] T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system, Solar Energy, 86 (2012) 1306-1312. [87] J.-M. Huang, C.-S. Ku, C.-M. Lin, S.-Y. Chen, H.-Y. Lee, In situ Al-doped ZnO films by atomic layer deposition with an interrupted flow, Materials Chemistry and Physics, 165 (2015) 245-252. [88] G. Luka, L. Wachnicki, B.S. Witkowski, T.A. Krajewski, R. Jakiela, E. Guziewicz, M. Godlewski, The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition, Materials Science and Engineering: B, 176 (2011) 237-241. [89] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, Wiley, 2006. [90] Y.-M. Chang, J. Shieh, P.-Y. Chu, H.-Y. Lee, C.-M. Lin, J.-Y. Juang, Enhanced Free Exciton and Direct Band-Edge Emissions at Room Temperature in Ultrathin ZnO Films Grown on Si Nanopillars by Atomic Layer Deposition, ACS Applied Materials & Interfaces, 3 (2011) 4415-4419. [91] J. Wang, S. Hou, H. Chen, L. Xiang, Defects-Induced Room Temperature Ferromagnetism in ZnO Nanorods Grown from ε-Zn(OH)2, The Journal of Physical Chemistry C, 118 (2014) 19469-19476. [92] X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size Dependence of Defect-Induced Room Temperature Ferromagnetism in Undoped ZnO Nanoparticles, The Journal of Physical Chemistry C, 116 (2012) 8813-8818. [93] Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects, Applied Physics Letters, 92 (2008) 082508. [94] Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires, Physical Review B, 77 (2008) 205411. [95] P. Erhart, K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide, Applied Physics Letters, 88 (2006) 201918. [96] R. Vidya, P. Ravindran, H. Fjellvåg, B.G. Svensson, E. Monakhov, M. Ganchenkova, R.M. Nieminen, Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations, Physical Review B, 83 (2011) 045206. [97] A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO, Physical Review B, 61 (2000) 15019-15027. [98] P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Grain boundary complexions, Acta Materialia, 62 (2014) 1-48. [99] J.-I. Hong, J. Choi, S.S. Jang, J. Gu, Y. Chang, G. Wortman, R.L. Snyder, Z.L. Wang, Magnetism in Dopant-Free ZnO Nanoplates, Nano Letters, 12 (2012) 576-581. [100] S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles, RSC Advances, 5 (2015) 99766-99774. [101] Y. Li, R. Deng, B. Yao, G. Xing, D. Wang, T. Wu, Tuning ferromagnetism in MgxZn1−xO thin films by band gap and defect engineering, Applied Physics Letters, 97 (2010) 102506. [102] H. You, J. Yang, J.Y. Zhu, W.F. Xu, X.D. Tang, Oxygen interstitials enhanced room temperature ferromagnetism in undoped zinc oxide, Applied Surface Science, 258 (2012) 4455-4459. [103] H.E. Stanley, Introduction to phase transitions and critical phenomena, Oxford University Press, 1971. [104] R. Zhang, R.F. Willis, Thickness-Dependent Curie Temperatures of Ultrathin Magnetic Films: Effect of the Range of Spin-Spin Interactions, Physical Review Letters, 86 (2001) 2665-2668. [105] L.-T. Chang, C.-Y. Wang, J. Tang, T. Nie, W. Jiang, C.-P. Chu, S. Arafin, L. He, M. Afsal, L.-J. Chen, K.L. Wang, Electric-Field Control of Ferromagnetism in Mn-Doped ZnO Nanowires, Nano Letters, 14 (2014) 1823-1829. [106] S. Ghosh, G.G. Khan, B. Das, K. Mandal, Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires, Journal of Applied Physics, 109 (2011) 123927. [107] V. Lopez-Dominguez, J.M. Hernàndez, J. Tejada, R.F. Ziolo, Colossal Reduction in Curie Temperature Due to Finite-Size Effects in CoFe2O4 Nanoparticles, Chemistry of Materials, 25 (2013) 6-11. [108] S.K. Bose, J. Kudrnovský, V. Drchal, I. Turek, Pressure dependence of Curie temperature and resistivity in complex Heusler alloys, Physical Review B, 84 (2011) 174422. [109] W.J. Choi, J. Jung, S. Lee, Y.J. Chung, C.-S. Yang, Y.K. Lee, Y.-S. Lee, J.K. Park, H.W. Ko, J.-O. Lee, Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films, 5 (2015) 9974. [110] A.J. Behan, A. Mokhtari, H.J. Blythe, D. Score, X.H. Xu, J.R. Neal, A.M. Fox, G.A. Gehring, Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator, Physical Review Letters, 100 (2008) 047206. [111] Z.L. Lu, H.S. Hsu, Y.H. Tzeng, F.M. Zhang, Y.W. Du, J.C.A. Huang, The origins of ferromagnetism in Co-doped ZnO single crystalline films: From bound magnetic polaron to free carrier-mediated exchange interaction, Applied Physics Letters, 95 (2009) 102501. [112] D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, Shape-Selective Dependence of Room Temperature Ferromagnetism Induced by Hierarchical ZnO Nanostructures, ACS Applied Materials & Interfaces, 6 (2014) 8981-8995.
|