跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林曼玲
研究生(外文):Lin, Man-Ling
論文名稱:以原子層沉積製備之超薄氧化鋅薄膜的傳輸特性與室溫鐵磁性研究
論文名稱(外文):Transport and Room Temperature Ferromagnetism in Ultrathin Zinc Oxide Films prepared by Atomic Layer Deposition
指導教授:莊振益李信義李信義引用關係
指導教授(外文):Juang, Jenh-YihLee, Hsin-Yi
口試委員:吳光雄周武清陳錦明林志明古慶順
口試委員(外文):Wu, Kaung-HsiungChou, Wu-ChinChen, Jin-MingLin, Chih-MingKu, Ching-Shun
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:55
中文關鍵詞:半導體材料原子層沉積技術電學特性光學特性磁學特性
外文關鍵詞:SemiconductorsAtomic Layer DepositionElectric TransportOptical PropertiesMagnetic Properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以使用原子層沉積技術製備的超薄(小於50奈米)氧化鋅薄膜為主軸,研究其摻雜鋁以後之傳輸特性,以及其成長在矽奈米柱基板上所顯現之室溫鐵磁特性。在電傳輸特性的部份,我們將一系列厚度為~30奈米的摻鋁氧化鋅藉由原子層沉積技術成長在矽(100)基板上,以探討溫度效應對晶格方向、穿透率、以及光電特性上的影響。本實驗特別利用臨場摻雜方式,在100到300 ℃之間成長摻鋁氧化鋅薄膜,以提升鋁摻雜的效應。實驗結果顯示,提高生長溫度會提升薄膜的結晶性和載子遷移率,以及可見光範圍內的平均穿透率皆高於95%。尤其是在成長溫度為300 ℃的樣品,雖然其電阻率(6×〖10〗^(-4) Ω-cm)比使用濺鍍方式(2~4×〖10〗^(-4) Ω-cm)來的高,但是其遷移率(136 cm^2 V^(-1) s^(-1))比之前的文獻(50~60 cm^2 V^(-1) s^(-1))提升了2倍有餘。二次離子質譜儀分析顯示氫原子的鍵結可以有效減少界面電荷陷阱密度,可能是進一步導致了載子遷移率增加的主要關鍵。本研究結果顯示摻鋁氧化鋅薄膜,在光電元件的應用上是極具有競爭力的。有關室溫鐵磁特性部分的研究,主要想進一步釐清目前學界對有關未摻雜過渡金屬的氧化物半導體顯現室溫鐵磁性的真正原因。本實驗設計,將一系列氧化鋅薄膜藉由原子層沉積技術,分別成長在矽(100)基板以及矽奈米柱上,並藉由成長溫度控制薄膜中的缺陷種類與濃度,以觀察其對顯現之室溫鐵磁性的影響,以進一步分析導致室溫鐵磁性的主要原因。光激發螢光光譜以及X射線光電子能譜指出低溫成長的氧化鋅具有較多的缺陷,而根據超導量子干涉磁量儀量測結果顯示,這些具較高濃度缺陷的薄膜均具有較高的飽和磁化強度(1.76 emu/cm^3)且其鐵磁轉變之居禮溫度可高達404K。進一步分析指出,未摻雜氧化鋅薄膜的鐵磁性,主要源自於單價電荷氧空缺與鋅缺陷之間的交互作用。而成長在矽奈米柱的氧化鋅結異質接面結構,因具有較大的表面積/體積比,即使在完全相同的成長條件下,其飽和磁化強度比直接成長在矽平面基板的氧化鋅薄膜,可以大上兩個數量級。此一結果,應可對於方興未艾的自旋電子學,提供一定程度的參考價值。
This thesis aims to investigate the electrical transport properties and room-temperature ferromagnetism of ultrathin ZnO films grown by atomic layer deposition (ALD) method. For the electrical transport part, we had made systematic studies on how growth temperature affects the microstructure, transport and optoelectronic properties of a series of Al-doped ZnO (AZO) films with thickness of 20-30 nm deposited on polished silicon-(100) and glass substrates by the atomic layer deposition (ALD). Specifically, effective Al-doping was achieved by an in-situ doping-growth scheme with the growth temperature ranging from 100 ℃ to 300 ℃. Experimental results showed that, in general, increasing the growth temperature would result in much improved film crystallinity and carrier mobility, with the average transmittance in the visible wavelength range being exceeding 95 % in all cases. In particular, for AZO films grown at 300 ℃, an unprecedented mobility of 136 cm^2 V^(-1) s^(-1), comparing to the typical values of 50~60 cm^2 V^(-1) s^(-1) reported previously, was obtained. Despite that the resistivity (ρ≈6×〖10〗^(-4) Ω-cm) of the 300 °C AZO films is still slightly higher than that of some highly-doped ZnO (ρ=2~4×〖10〗^(-4) Ω-cm) prepared by sputtering method. The secondary ion mass spectroscopy (SIMS) analyses revealed that hydrogen incorporation is the key in reducing the charge trap density and, hence, resulting in much enhanced carrier mobility. The present results promise a keen competitiveness of AZO with the indium tin oxide (ITO) film for thin-film-transistor (TFT) as well as in photovoltaic device applications.
On the other hand, the origin that gives rise to room-temperature ferromagnetism (RTFM) in various pristine oxide semiconductors, including ZnO, has been, and still is, a subject of extensive debates. In the second part of this thesis, we made detailed comparisons of RTFM exhibited in a series of un-doped ZnO thin films using ALD. The films were deliberately deposited on Si-substrate and substrates with Si-nanopillars (Si-NP) at different deposition temperatures. Photoluminescence (PL) and X-ray photoelectron spectroscopies (XPS) demonstrate clearly that at lower deposit temperatures of ZnO films grown on both types of substrates are having larger concentration of defects, which, in turn, resulting in more pronounced RTFM. Specifically, for films grown on Si-NPs, a remarkable saturation magnetization (M_s=1.76 emu/cm^3) with a Curie temperature (T_C=404K) is observed. Further analyses indicate that the RTFM arises primarily from the interaction between singly charged oxygen vacancy (V_O^+) and Zinc vacancy (V_Zn), which is consistent with the defect-mediated bound magnetic polaron model. Moreover, due to the large surface/volume ratio, the silicon-NP/ZnO core/shell heterostructure evidently exhibited nearly two order of magnitude improvement in the magnitude of saturation magnetization with slightly higher Curie temperature. The present results may have significant implications in the spintronics applications.
摘要 I
Abstract III
Acknowledgements V
Contents VI
Table captions VIII
Figure captions IX
1. Introduction 1
1-1 Background 1
1-2 Synopsis of Chapters 1
2. Semiconductor Physics 3
2-1 Zinc Oxide 3
2-2 Electrical properties 6
2-2-1 Hall-Effect [19] 6
2-2-2 The literature for electric property of ZnO-based material 8
2-3 Magnetic properties 10
2-3-1 Curie temperatures (Tc) 10
2-3-2 Hund’s rule 10
2-3-3 Diluted Magnetic Semiconductors (DMSs) 11
2-3-4 Exchange interaction [32] 12
2-3-5 The literature for magnetic property of ZnO-based material 14
2-4 Atomic Layer Deposition 17
2-5 Motivation 20
3. Experimental techniques 21
3-1 Experimental flow chart 21
3-2 Atomic layer deposition (ALD) 22
3-3 Inductively coupled plasma chemical vapor deposition (ICPCVD) 22
3-4 X-ray diffraction (XRD) 23
3-5 Transmission electron microscope (TEM) 24
3-6 Secondary ion mass spectrometry (SIMS) 24
3-7 Photoluminescence (PL) 25
3-8 Ultraviolet–visible spectroscopy (UV-Vis) 25
3-9 Hall-Effect measurement 26
3-10 X-ray photoemission spectroscopy (XPS) 26
3-11 Superconducting Quantum Interference Device (SQUID) 27
4. High mobility transparent conductive AZO thin films by ALD 28
4-1 Structure property 28
4-2 Optical and electric property 31
5. Enhancement of ferromagnetic from ultrathin ZnO films grown on Si-nanopillars by atomic layer deposition 38
5-1 Structure Property 38
5-2 Optical and magnetic property 40
6. Conclusion 46
Reference 48
[1] C.F. Klingshirn, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Berlin Heidelberg, 2010.
[2] Z.L. Wang, Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology, ACS Nano, 2 (2008) 1987-1992.
[3] M. Chaari, A. Matoussi, Electrical conduction and dielectric studies of ZnO pellets, Physica B: Condensed Matter, 407 (2012) 3441-3447.
[4] X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nature Materials, 15 (2016) 383-396.
[5] O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nature Materials, 4 (2009) 592-597.
[6] Z.L. Wang, FUNCTIONAL OXIDE NANOBELTS: Materials, Properties and Potential Applications in Nanosystems and Biotechnology, Annual Review of Physical Chemistry, 55 (2004) 159-196.
[7] V. Modepalli, M.-J. Jin, J. Park, J. Jo, J.-H. Kim, J.M. Baik, C. Seo, J. Kim, J.-W. Yoo, Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires, ACS Nano, 10 (2016) 4618-4626.
[8] B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-Related Emissions and Magnetization Properties of ZnO Nanorods, Advanced Functional Materials, 20 (2010) 1161-1165.
[9] S.B. Singh, Y.-F. Wang, Y.-C. Shao, H.-Y. Lai, S.-H. Hsieh, M.V. Limaye, C.-H. Chuang, H.-C. Hsueh, H. Wang, J.-W. Chiou, H.-M. Tsai, C.-W. Pao, C.-H. Chen, H.-J. Lin, J.-F. Lee, C.-T. Wu, J.-J. Wu, W.-F. Pong, T. Ohigashi, N. Kosugi, J. Wang, J. Zhou, T. Regier, T.-K. Sham, Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques, Nanoscale, 6 (2014) 9166-9176.
[10] K.D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots, CRC Press, 2016.
[11] M. Henini, Molecular Beam Epitaxy: From Research to Mass Production, Elsevier Science, 2012.
[12] D.S. Ginley, H. Hosono, D.C. Paine, Handbook of Transparent Conductors, Springer US, 2010.
[13] L. Pauling, The chemical bond: a brief introduction to modern structural chemistry, Cornell University Press, 1967.
[14] U. Rössler, R. Blachnik, J. Chu, R.R. Galazka, J. Geurts, J. Gutowski, B. Hönerlage, D. Hofmann, J. Kossut, R. Levy, II-VI and I-VII Compounds; Semimagnetic Compounds: Supplement to Vols. III/17b, 22a (Print Version) Revised and Updated Edition of Vols. III/17b, 22a (CD-ROM), Springer Berlin Heidelberg, 1999.
[15] E.H. Kisi, M.M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallographica Section C, 45 (1989) 1867-1870.
[16] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, 53 (1996) 11425-11438.
[17] M. Tadatsugu, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, 20 (2005) S35.
[18] J. Meyer, P. Görrn, S. Hamwi, H.-H. Johannes, T. Riedl, W. Kowalsky, Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition, Applied Physics Letters, 93 (2008) 073308.
[19] D.K. Schroder, Semiconductor Material and Device Characterization, Wiley, 2006.
[20] D.C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B, 80 (2001) 383-387.
[21] D.C. Look, J.W. Hemsky, J.R. Sizelove, Residual Native Shallow Donor in ZnO, Physical Review Letters, 82 (1999) 2552-2555.
[22] G.W. Tomlins, J.L. Routbort, T.O. Mason, Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide, Journal of Applied Physics, 87 (2000) 117-123.
[23] C.G. Van de Walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, 85 (2000) 1012-1015.
[24] C.G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions, Nature, 423 (2003) 626-628.
[25] M. Seung Yeop, B. Seung Jae, L. Chang Hyun, C. Woo Young, L. Koeng Su, Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using A l C l 3 (6 H 2 O ) as New Doping Material, Japanese Journal of Applied Physics, 36 (1997) L1078.
[26] H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy, Applied Physics Letters, 77 (2000) 3761-3763.
[27] H.B. Lee, R.T. Ginting, S.T. Tan, C.H. Tan, A. Alshanableh, H.F. Oleiwi, C.C. Yap, M.H.H. Jumali, M. Yahaya, Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement, 6 (2016) 32645.
[28] P. Banerjee, W.-J. Lee, K.-R. Bae, S.B. Lee, G.W. Rubloff, D.J. N., G.T. A., W.D. M., B.T. M., Y. M., T. B., C.T. J., Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, 108 (2010) 043504.
[29] C.H. Ahn, S.Y. Lee, H.K. Cho, Influence of growth temperature on the electrical and structural characteristics of conductive Al-doped ZnO thin films grown by atomic layer deposition, Thin Solid Films, 545 (2013) 106-110.
[30] G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, M. Godlewski, Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications, Journal of Materials Science: Materials in Electronics, 22 (2011) 1810-1815.
[31] Y. Li, R. Yao, H. Wang, X. Wu, J. Wu, X. Wu, W. Qin, Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn–Al–O Interfaces Fabricated by Atomic Layer Deposition, ACS Applied Materials & Interfaces, 9 (2017) 11711-11720.
[32] S. Blundell, Magnetism in Condensed Matter, OUP Oxford, 2001.
[33] J.K. Furdyna, Diluted magnetic semiconductors, Journal of Applied Physics, 64 (1988) R29-R64.
[34] D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, B. Barbara, D. Dufeu, Carrier-induced ferromagnetism in p−Zn1−xMnxTe, Physical Review B, 63 (2001) 085201.
[35] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic, Science, 281 (1998) 951.
[36] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, H. Koinuma, Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, Science, 291 (2001) 854.
[37] K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Applied Physics Letters, 79 (2001) 988-990.
[38] S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−δ, Physical Review Letters, 91 (2003) 077205.
[39] S.N. Kale, S.B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V.N. Kulkarni, R.L. Greene, T. Venkatesan, Magnetism in cobalt-doped Cu2O thin films without and with Al, V, or Zn codopants, Applied Physics Letters, 82 (2003) 2100-2102.
[40] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, 287 (2000) 1019-1022.
[41] M.A. García, M.L. Ruiz-González, A. Quesada, J.L. Costa-Krämer, J.F. Fernández, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martín-González, M. Villegas, F. Briones, J.M. González-Calbet, A. Hernando, Interface Double-Exchange Ferromagnetism in the Mn-Zn-O System: New Class of Biphase Magnetism, Physical Review Letters, 94 (2005) 217206.
[42] D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system, Nature Materials, 3 (2004) 709-714.
[43] M. Snure, D. Kumar, A. Tiwari, Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic?, Applied Physics Letters, 94 (2009) 012510.
[44] X. Zhang, Y.H. Cheng, L.Y. Li, H. Liu, X. Zuo, G.H. Wen, L. Li, R.K. Zheng, S.P. Ringer, Evidence for high-Tc ferromagnetism in Znx(ZnO)1−x granular films mediated by native point defects, Physical Review B, 80 (2009) 174427.
[45] T.-L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, S.C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Applied Physics Letters, 102 (2013) 072408.
[46] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Materials, 4 (2005) 173-179.
[47] T. Suntola, J. Hyvarinen, Atomic Layer Epitaxy, Annual Review of Materials Science, 15 (1985) 177-195.
[48] T. Tommi, K. Maarit, Atomic layer deposition of ZnO: a review, Semiconductor Science and Technology, 29 (2014) 043001.
[49] N.Y. Yuan, S.Y. Wang, C.B. Tan, X.Q. Wang, G.G. Chen, J.N. Ding, The influence of deposition temperature on growth mode, optical and mechanical properties of ZnO films prepared by the ALD method, Journal of Crystal Growth, 366 (2013) 43-46.
[50] J. Malm, E. Sahramo, J. Perälä, T. Sajavaara, M. Karppinen, Low-temperature atomic layer deposition of ZnO thin films: Control of crystallinity and orientation, Thin Solid Films, 519 (2011) 5319-5322.
[51] E.B. Yousfi, J. Fouache, D. Lincot, Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry, Applied Surface Science, 153 (2000) 223-234.
[52] S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H.J. Chang, H.-H. Park, Structural and Electrical Properties of ZnO Thin Films Deposited by Atomic Layer Deposition at Low Temperatures, Journal of The Electrochemical Society, 155 (2008) H738-H743.
[53] P. Swee-Yong, C. Kwang-Leong, H. Xianghui, S. Chongxin, Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19 (2008) 435609.
[54] J.W. Elam, Z.A. Sechrist, S.M. George, ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements, Thin Solid Films, 414 (2002) 43-55.
[55] J.W. Elam, S.M. George, Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques, Chemistry of Materials, 15 (2003) 1020-1028.
[56] K. Sang Jik, Effect of Precursor-Pulse on Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition, Japanese Journal of Applied Physics, 44 (2005) 1062.
[57] N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, F.B. Prinz, Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity, Chemistry of Materials, 22 (2010) 4769-4775.
[58] W.J. Maeng, L. Jae-won, L. Ju Ho, C. Kwun-Bum, P. Jin-Seong, Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures, Journal of Physics D: Applied Physics, 44 (2011) 445305.
[59] J.W. Elam, D. Routkevitch, S.M. George, Properties of ZnO / Al2 O 3 Alloy Films Grown Using Atomic Layer Deposition Techniques, Journal of The Electrochemical Society, 150 (2003) G339-G347.
[60] J.-S. Na, Q. Peng, G. Scarel, G.N. Parsons, Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-Doped ZnO, Chemistry of Materials, 21 (2009) 5585-5593.
[61] Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai, J. Liu, Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates, Journal of Alloys and Compounds, 718 (2017) 161-169.
[62] O. Madelung, Semiconductors: Data Handbook, Springer Berlin Heidelberg, 2012.
[63] Z.B. Bahşi, M.H. Aslan, M. Ozer, A.Y. Oral, Sintering behavior of ZnO:Al ceramics fabricated by sol-gel derived nanocrystalline powders, Crystal Research and Technology, 44 (2009) 961-966.
[64] K. Prabakar, C. Kim, C. Lee, UV, violet and blue-green luminescence from RF sputter deposited ZnO:Al thin films, Crystal Research and Technology, 40 (2005) 1150-1154.
[65] T.-Y. Chiang, C.-L. Dai, D.-M. Lian, Influence of growth temperature on the optical and structural properties of ultrathin ZnO films, Journal of Alloys and Compounds, 509 (2011) 5623-5626.
[66] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, Effect of post-heat treatment on the electrical and optical properties of ZnO:Al thin films, Thin Solid Films, 502 (2006) 219-222.
[67] B.-Y. Oh, J.-H. Kim, J.-W. Han, D.-S. Seo, H.S. Jang, H.-J. Choi, S.-H. Baek, J.H. Kim, G.-S. Heo, T.-W. Kim, K.-Y. Kim, Transparent conductive ZnO:Al films grown by atomic layer deposition for Si-wire-based solar cells, Current Applied Physics, 12 (2012) 273-279.
[68] S.J. Lim, S. Kwon, H. Kim, ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor, Thin Solid Films, 516 (2008) 1523-1528.
[69] C.R. Ellinger, S.F. Nelson, Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone), Chemistry of Materials, 26 (2014) 1514-1522.
[70] Y.-M. Chang, M.-L. Lin, T.-Y. Lai, H.-Y. Lee, C.-M. Lin, Y.-C.S. Wu, J.-Y. Juang, Field Emission Properties of Gold Nanoparticle-Decorated ZnO Nanopillars, ACS Applied Materials & Interfaces, 4 (2012) 6676-6682.
[71] D.K. Kim, H.B. Kim, Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure, Journal of Alloys and Compounds, 509 (2011) 421-425.
[72] S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, 287 (2006) 78-84.
[73] S.-H. Wei, S.B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, Journal of Applied Physics, 87 (2000) 1304-1311.
[74] W.Y. Liang, A.D. Yoffe, Transmission Spectra of ZnO Single Crystals, Physical Review Letters, 20 (1968) 59-62.
[75] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, 78 (2001) 407-409.
[76] Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Applied Physics Letters, 83 (2003) 1689-1691.
[77] T.S. Moss, The Interpretation of the Properties of Indium Antimonide, Proceedings of the Physical Society. Section B, 67 (1954) 775.
[78] S.-M. Park, T. Ikegami, K. Ebihara, P.-K. Shin, Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Applied Surface Science, 253 (2006) 1522-1527.
[79] Z. Baji, Z. Lábadi, Z.E. Horváth, I. Bársony, Structure and morphology of aluminium doped Zinc-oxide layers prepared by atomic layer deposition, Thin Solid Films, 520 (2012) 4703-4706.
[80] P. Banerjee, W.-J. Lee, K.-R. Bae, S.B. Lee, G.W. Rubloff, Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, 108 (2010) 043504.
[81] P. Genevée, F. Donsanti, G. Renou, D. Lincot, Study of the aluminum doping of zinc oxide films prepared by atomic layer deposition at low temperature, Applied Surface Science, 264 (2013) 464-469.
[82] T. Ocal, S. Yusuf, A. Gulnur, O. Lutfi, High quality ITO thin films grown by dc and RF sputtering without oxygen, Journal of Physics D: Applied Physics, 43 (2010) 055402.
[83] D. Kudryashov, A. Gudovskikh, K. Zelentsov, Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering, Journal of Physics: Conference Series, 461 (2013) 012021.
[84] Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, Structural and morphological properties of ITO thin films grown by magnetron sputtering, Journal of Theoretical and Applied Physics, 9 (2015) 285-290.
[85] M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, J.M. Pearce, Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films, AIP Advances, 5 (2015) 017128.
[86] T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system, Solar Energy, 86 (2012) 1306-1312.
[87] J.-M. Huang, C.-S. Ku, C.-M. Lin, S.-Y. Chen, H.-Y. Lee, In situ Al-doped ZnO films by atomic layer deposition with an interrupted flow, Materials Chemistry and Physics, 165 (2015) 245-252.
[88] G. Luka, L. Wachnicki, B.S. Witkowski, T.A. Krajewski, R. Jakiela, E. Guziewicz, M. Godlewski, The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition, Materials Science and Engineering: B, 176 (2011) 237-241.
[89] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, Wiley, 2006.
[90] Y.-M. Chang, J. Shieh, P.-Y. Chu, H.-Y. Lee, C.-M. Lin, J.-Y. Juang, Enhanced Free Exciton and Direct Band-Edge Emissions at Room Temperature in Ultrathin ZnO Films Grown on Si Nanopillars by Atomic Layer Deposition, ACS Applied Materials & Interfaces, 3 (2011) 4415-4419.
[91] J. Wang, S. Hou, H. Chen, L. Xiang, Defects-Induced Room Temperature Ferromagnetism in ZnO Nanorods Grown from ε-Zn(OH)2, The Journal of Physical Chemistry C, 118 (2014) 19469-19476.
[92] X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size Dependence of Defect-Induced Room Temperature Ferromagnetism in Undoped ZnO Nanoparticles, The Journal of Physical Chemistry C, 116 (2012) 8813-8818.
[93] Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects, Applied Physics Letters, 92 (2008) 082508.
[94] Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires, Physical Review B, 77 (2008) 205411.
[95] P. Erhart, K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide, Applied Physics Letters, 88 (2006) 201918.
[96] R. Vidya, P. Ravindran, H. Fjellvåg, B.G. Svensson, E. Monakhov, M. Ganchenkova, R.M. Nieminen, Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations, Physical Review B, 83 (2011) 045206.
[97] A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO, Physical Review B, 61 (2000) 15019-15027.
[98] P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Grain boundary complexions, Acta Materialia, 62 (2014) 1-48.
[99] J.-I. Hong, J. Choi, S.S. Jang, J. Gu, Y. Chang, G. Wortman, R.L. Snyder, Z.L. Wang, Magnetism in Dopant-Free ZnO Nanoplates, Nano Letters, 12 (2012) 576-581.
[100] S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles, RSC Advances, 5 (2015) 99766-99774.
[101] Y. Li, R. Deng, B. Yao, G. Xing, D. Wang, T. Wu, Tuning ferromagnetism in MgxZn1−xO thin films by band gap and defect engineering, Applied Physics Letters, 97 (2010) 102506.
[102] H. You, J. Yang, J.Y. Zhu, W.F. Xu, X.D. Tang, Oxygen interstitials enhanced room temperature ferromagnetism in undoped zinc oxide, Applied Surface Science, 258 (2012) 4455-4459.
[103] H.E. Stanley, Introduction to phase transitions and critical phenomena, Oxford University Press, 1971.
[104] R. Zhang, R.F. Willis, Thickness-Dependent Curie Temperatures of Ultrathin Magnetic Films: Effect of the Range of Spin-Spin Interactions, Physical Review Letters, 86 (2001) 2665-2668.
[105] L.-T. Chang, C.-Y. Wang, J. Tang, T. Nie, W. Jiang, C.-P. Chu, S. Arafin, L. He, M. Afsal, L.-J. Chen, K.L. Wang, Electric-Field Control of Ferromagnetism in Mn-Doped ZnO Nanowires, Nano Letters, 14 (2014) 1823-1829.
[106] S. Ghosh, G.G. Khan, B. Das, K. Mandal, Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires, Journal of Applied Physics, 109 (2011) 123927.
[107] V. Lopez-Dominguez, J.M. Hernàndez, J. Tejada, R.F. Ziolo, Colossal Reduction in Curie Temperature Due to Finite-Size Effects in CoFe2O4 Nanoparticles, Chemistry of Materials, 25 (2013) 6-11.
[108] S.K. Bose, J. Kudrnovský, V. Drchal, I. Turek, Pressure dependence of Curie temperature and resistivity in complex Heusler alloys, Physical Review B, 84 (2011) 174422.
[109] W.J. Choi, J. Jung, S. Lee, Y.J. Chung, C.-S. Yang, Y.K. Lee, Y.-S. Lee, J.K. Park, H.W. Ko, J.-O. Lee, Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films, 5 (2015) 9974.
[110] A.J. Behan, A. Mokhtari, H.J. Blythe, D. Score, X.H. Xu, J.R. Neal, A.M. Fox, G.A. Gehring, Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator, Physical Review Letters, 100 (2008) 047206.
[111] Z.L. Lu, H.S. Hsu, Y.H. Tzeng, F.M. Zhang, Y.W. Du, J.C.A. Huang, The origins of ferromagnetism in Co-doped ZnO single crystalline films: From bound magnetic polaron to free carrier-mediated exchange interaction, Applied Physics Letters, 95 (2009) 102501.
[112] D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, Shape-Selective Dependence of Room Temperature Ferromagnetism Induced by Hierarchical ZnO Nanostructures, ACS Applied Materials & Interfaces, 6 (2014) 8981-8995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top