跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張玉姍
研究生(外文):Chang, Yu-Shan
論文名稱:近似繞射極限之超短變焦光學鏡頭的設計與分析
論文名稱(外文):Design and Analysis of Ultracompact Zoom Lens with Diffraction-Limit-Like Performance
指導教授:徐琅
指導教授(外文):Hsu, Long
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:變焦超短繞射極限
外文關鍵詞:Zoom LensUltracompactDiffraction-Limit-Like
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主題是近似繞射極限之超短尺寸變焦光學鏡頭之設計與光學效能分析,旨在研究尺寸較為緊緻、高影像品質的變焦鏡頭。在研究中,為能使成像鏡頭更符合在內視鏡等應用,我們將鏡頭的尺寸限制於長度與直徑均小於2 mm的範圍;同時,在設計中,我們以三個透鏡組合而成光學鏡頭,因此為了更簡易評估系統整體像差對成像影像品質的影響,經過理論分析評估單一透鏡的Strehl Ratio、MTF、及PSF三個評估參數的等效性後,我們以鏡頭系統成像所得的Strehl Ratio參數來當作判定準則,而定義Strehl Ratio大於80%為近似繞射極限的準則,以避免複雜計算。研究中,為達到這個品質要求,鏡頭的組合使用非球面透鏡,同時為滿足超短尺寸且變焦的要求,鏡頭設計採用內調焦架構,藉由移動鏡頭內部的單一透鏡,達到變焦效果,因此鏡頭長度不因變焦功能而有改變,可以維持超短尺寸的特徵。而設計的主架構應用,我們選擇以內視鏡為應用範例,針對對位可調(adjustable-focus)以及縮放視野範圍的兩種鏡頭進行設計,在研究中,我們最佳化各透鏡的曲面,讓鏡頭的尺寸緊緻化,同時影像品質亦達到近似繞射極限的要求。
The topic of the dissertation is the design and performance analysis of an ultracompact zoom lens with diffraction-limit-like performance. In this study, the size of the lens is smaller than 2mm to meet the requirement of endoscopes and the lens consists of four lenses. In order to more easily evaluate the influence of the aberration of the overall system on the image quality, we use Strehl Ratio of greater than 80% as the criteria for diffractin-limit-like performance to avoid complex calculations in this paper, after the theoretical analysis to evaluate the equivalence of the three parameters of the single lens, i.e., Strehl Ratio, MTF, and PSF. To achieve the diffractin-limit-like optical imaging quality, aspherical lenses are employed and an internally focusing configuration is adopted for zooming by shifting a single lens inside the lens. Therefore, the lens length does not change when zooming, and an ultracompact size can be maintained. This paper chooses endoscopy to present two ultracompact lens designs, which are of adjustable-focus and zoom functions. In addition, we optimize the lens, so that the lens is compact, and the image quality meets the requirements of diffractin-limit-like performance.
中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
誌謝 ………………………………………………………………… iii
目錄 ………………………………………………………………… iv
表目錄 ………………………………………………………………… vi
圖目錄 ………………………………………………………………… viii
一、 簡介…………………………………………………… 1
1.1 研究動機……………………………………………………… 1
1.2 光學設計流程………………………………………………… 3
二、 文獻探討與實做議題………………………………………… 7
2.1 內視鏡光學原理……………………………………………… 7
2.1.1 硬管內視鏡的光學架構……………………………………… 7
2.1.2 軟管內視鏡的光學架構……………………………………… 9
2.1.3 內視鏡的設計規格…………………………………………… 10
2.2 變焦鏡頭理論………………………………………………… 11
2.3 鏡頭的製造方法……………………………………………… 14
2.4 鏡頭的組立公差……………………………………………… 15
三、 理論分析……………………………………………………… 17
3.1 一階光學理論………………………………………………… 17
3.2 三階與五階像差理論………………………………………… 19
3.2.1 光束像差……………………………………………………… 19
3.2.2 波前像差……………………………………………………… 21
3.3 點擴散函數與Strehl Ratio…………………………23
3.4 點擴散函數與賽德像差……………………………………… 26
3.5 MTF與Strehl Ratio…………………………………………33
3.6 MTF/Strehl ratio與三階/五階像差:例子說明……35
四、 設計案例分析………………………………………………… 47
4.1 設計案例一:內視鏡的變焦鏡頭………………………47
4.1.1 設計概念……………………………………………………… 47
4.1.2 設計規格……………………………………………………… 48
4.1.3 模擬設定……………………………………………………… 49
4.1.4 組態分析……………………………………………………… 51
4.1.5 鏡頭光學效能分析…………………………………………… 54
4.1.6 鏡頭變焦特性分析…………………………………………… 56
4.1.7 鏡頭與偵測器的整合分析……………………………………58
4.1.8 公差分析……………………………………………………… 59
4.1.9 討論與結論…………………………………………………… 60
4.2 設計案例二:內視鏡的對位可調鏡頭………………62
4.2.1 設計概念……………………………………………………… 62
4.2.2 設計規格……………………………………………………… 63
4.2.3 模擬設定……………………………………………………… 64
4.2.4 組態分析……………………………………………………… 66
4.2.5 鏡頭光學效能分析…………………………………………… 69
4.2.6 鏡頭與偵測器的整合分析……………………………………71
4.2.7 公差分析……………………………………………………… 72
4.2.8 討論與結論…………………………………………………… 76
五、 結論與未來展望……………………………………………… 78
5.1 結論…………………………………………………………… 78
5.1.1 設計案例一:內視鏡變焦鏡頭(視角可變)的設計成果……78
5.1.2 設計案例二:內視鏡對位可調鏡頭(物距可變)的設計成果79
5.1.3 實務上的議題………………………………………………… 79
5.2 未來展望……………………………………………………… 80
參考文獻 ………………………………………………………………… 83
1. W. J. Smith, Modern Lens Design, 2nd Edition, SPIE Press, 2005.
2. “伸縮式鏡頭,” (百度百科), https://baike.baidu.com/item/%E4%BC%B8%E7%BC%A9%E5%BC%8F%E9%95%9C%E5%A4%B4.
3. “潛望鏡式鏡頭,” (百度百科),
https://baike.baidu.com/item/%E6%BD%9C%E6%9C%9B%E5%BC%8F%E9%95%9C%E5%A4%B4/3774464.
4. “Samsung Galaxy K Zoom Android cameraphone packs 20MP sensor and 24-240mm zoom,” (wirefresh), http://www.wirefresh.com/samsung-galaxy-k-zoom- android-cameraphone-packs-20mp-sensor-and-24-240mm-zoom/.
5. “ZenFone Zoom,” (ASUS), https://www.asus.com/tw/Phone/ZenFone-Zoom-
ZX551ML/.
6. “HOYA Introduces Industry’s Thinnest*1 Lens Unit for Smartphones with 3⨯ Optical Zoom and Optical Shake Reduction,” (HOYA), http://www.hoya.co.jp/english/company/news/20130801.html.
7. “iPhone X will up the ante against Note 8's dual rear camera,” (CNET), https://www.cnet.com/news/your-kids-hate-your-smartphone-addiction/.
8. “HUAWEI P20 Pro,” (HUAWEI), https://consumer.huawei.com/tw/phones/p20-pro/.
9. D. Cheng, Y. Wang, L. Yu, and X. Liu, “Optical design and evaluation of a 4 mm cost-effective ultra-high-definition arthroscope,” Biomed. Opt. Express, 5, 8, pp.2697–2714, 2014.
10. L. Zhang, D. Cheng, and Y. Wang, “Integration design of rigid endoscope with different viewing angles,” Proc. SPIE, 9578, 957807, 2015.
11. Y. Zhou, W. Zhang, F.-C. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid-electrically tunable lens,” Opt. Express, 23, pp.20582–20592, 2015.
12. Y.-S. Chang, L. Hsu, and K.-L. Huang, “Adjustable-focus ultra-compact endoscopic lens design with ultrahigh optical performance,” Appl. Opt., 57, 5, pp.1091–1099, 2018.
13. Lighthouse Imaging, “Top 5 Optical Design Parameters for Chip on Tip Endoscopes,” https://www.lighthouseoptics.com/medical-device-design-development/.
14. G. D. Boreman, Modulation Transfer Function in Optical and Electro-optical Systems, SPIE Press, 2001, pp.28-29.
15. P. Bely, Ed., The Design and Construction of Large Optical Telescopes, Springer-Verlag New York, 2003, p.131.
16. R. R. Shannon and J. C. Wyant, Ed., Applied Optics and Optical Engineering, Vol. 8, Academic Press, 1980, pp.303-304.
17. V. N. Mahajan, “Strehl ratio for primary aberrations:some analytical results for circular and annular pupils”, J. Opt. Soc. Am., 72, 9, pp.1258-1266, 1982.
18. J. Sasian, class notes, Image and aberration evaluation, College of Optical Sciences, The University of Arizona.
19. 趙凱華,鐘錫華,光學,格致圖書公司,1992年,110-112頁。
20. W. J. Smith, Modern Optical Engineering, 4th Edition, SPIE Press, 2008, pp.72–74.
21. Basic Microscopy, “The Point Spread Function,” (ZEISS), https://www.zeiss.com/microscopy/us/solutions/reference/basic-microscopy/the-point-spread-function.html.
22. V. N. Mahajan, Optical Imaging and Aberrations, Part III Wavefront Analysis, SPIE Press, 2013, pp.3–7.
23. W. J. Smith, Modern Lens Design, 2nd Edition, SPIE Press, 2005, pp.71–73.
24. W. J. Smith, Modern Lens Design, 2nd Edition, SPIE Press, 2005, pp.43–46.
25. V. N. Mahajan, Optical Imaging and Aberrations, Part I Ray Geometrical Optics, SPIE Press, 1998.
26. V. N. Mahajan, Optical Imaging and Aberrations, Part II Wave Diffraction Optics, SPIE Press, 2001.
27. V. N. Mahajan, Optical Imaging and Aberrations, Part III Wavefront Analysis, SPIE Press, 2013.
28. American College of Surgeons, “The Bozzini Endoscope, ” https://www.facs.org/about-acs/archives/pasthighlights/bozzinihighlight.
29. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, pp.1-2.
30. Bozzini and the Lichtleiter, “Introducing the proto-endoscope” (European Museum of Urology), http://history.uroweb.org/welcome/.
31. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.3.
32. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.4.
33. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.22.
34. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.6.
35. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.20.
36. Grin Tech, “GRIN Endoscopic Rod Lens Systems,” https://www.grintech.de/fileadmin/user_upload/GRIN_Endoscopic_Systems.pdf.
37. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.7.
38. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.21.
39. GO FOTON, “SELFOC® Rod Lens/Physics of SELFOC,” http://www.gofoton.com/product/selfoc-rod-lens/.
40. Grin Tech, “Grin Lens and Lens Systems for Imaging Optics,” https://www.grintech.de/en/products/grin-lenses-and-lens-systems-for-imaging-optics/.
41. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.14.
42. D. Leiner, Digital Endoscope Design, SPIE Press, 2016, p.8.
43. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.7.
44. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.5.
45. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.12.
46. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.17.
47. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.16.
48. Herbert Gross, class notes, Lecture 13: Zoom systems, Institute of Applied Physics, Friedrich Schiller University Jena, p.9.
49. All About Plastic Moulding, “The Compression Moulding Process,” (D&M Plastics Inc.), www.plasticmoulding.ca/techniques/compression_moulding.htm.
50. ARBURG, “Injection compression moulding,” (ARBURG), https://www.arburg.com/products-and-services/injection-moulding/processes/injection-compression-moulding/.
51. Kasalis PIXID 500-S, http://www.kasalis.com/downloads/Kasalis_Pixid_2017.pdf.
52. Trioptics, “ProCam® Align Smart,” https://www.trioptics.com.tw/modules/nc_product/product/view/59-ProCam%C2%AE_Align_Smart.
53. B. Parris, “Practical Guide to Specifying Optical Components”, 2012,
https://wp.optics.arizona.edu/optomech/wp- content/uploads/sites/53/2016/10/Practical-Guide-to-Specifying-Optical- Components.pdf
54. J. H. Burge, class notes, Specifying optical elements, The University of Arizona.
55. E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, pp.153-155.
56. E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, pp.157-158.
57. E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, p.163.
58. Newport, “Technical Notes:Optics Formulas-Thin Lens Equations,”
https://www.newport.com/n/optics-formulas.
59. 趙凱華,鐘錫華,光學,格致圖書公司,1992年,48-50頁。
60. V. N. Mahajan, Aberration Theory Made Simple, 2nd Edition, SPIE Press, 2011,p.5.
61. V. N. Mahajan, Aberration Theory Made Simple, 2nd Edition, SPIE Press, 2011, pp.8-10.
62. V. N. Mahajan, Aberration Theory Made Simple, 2nd Edition, SPIE Press, 2011, p.78.
63. Wolfram Demonstrations Project, “Point Spread and Modulation Transfer Functions for Seidel Aberrations,” http://demonstrations.wolfram.com/PointSpreadAndModulationTransferFunctionsForSeidelAberration/.
64. W. J. Smith, Modern Optical Engineering, 4th Edition, SPIE Press, 2008, pp.385–388.
65. J. Cheng, The Principles of Astronomical Telescope Design, Springer Science+Business Media, 2009, p.73.
66. “Strehl ratio,” https://www.telescope-optics.net/Strehl.htm.
67. OSLO, http://www.lambdares.com/oslo.
68. Aspheric Surfaces, http://www2.ensc.sfu.ca/~glennc/e376/e376l9a.pdf.
69. MEM-TEK, “What is inside a zoom lens,” http://www.adaptall-
2.com/articles/InsideZoomLens/InsideZoomLens.html.
70. New-Shicoh Motor, http://www.new-shicoh.com/?lang=en.
71. OmniVision, “OV6922,” http://www.ovt.com/sensors/OV6922.
72. C.-Y. Hung and J.-L. Chern, “Zoom Lens,” US patent 7,605,986 (2009).
73. C.-Y. Yeh, J.-L. Chern, and W.-J. Jiang, “Internally focusing lens system,” US patent 8,000,032 2011.
74. Olympus, “3D imaging system,” http://medical.olympusamerica.com/products/3D-imaging-system.
75. S. Thibault, “Panoramic Lens Applications Revisited,” Proc. SPIE, 7000, 70000L, 2008.
電子全文 電子全文(網際網路公開日期:20241203)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top