(3.238.7.202) 您好!臺灣時間:2021/03/03 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林君融
研究生(外文):Lin, Chun-Rong
論文名稱:軟體定義行動網路交遞延遲分析: 網路微積分方法之探討
論文名稱(外文):Handoff Delay Analysis in SDN-enabled Mobile Networks: A Network Calculus Approach
指導教授:王蒞君
指導教授(外文):Wang, Li-Chun
口試委員:方凱田張志文黃建華王蒞君
口試委員(外文):Fang, Ki-TenChang, Chih-WenHuang, Jian-HuaWang, Li-Chun
口試日期:2017-09-12
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:軟體定義網路行動網路網路微積分
外文關鍵詞:SDNMobile NetworkNetwork Calculus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
軟體定義網路(Software Defined Network, SDN)在次世代行動網路中扮演一個非常重要的角色,它擁有可擴展和客製化的特性,這是現今網路所缺乏的。隨著軟體定義網路和行動網路結合,控制器必須要處理因使用者不斷交遞而造成的繞送延遲問題。為了減少交遞延遲,數種預設路徑演算法分別在文獻中被提出,雖然這些方法能夠降低使用者交遞延遲,但演算法的效能分析模型仍然是一個開放性的議題。我們建立使用者交遞延遲分析模型,在未來的行動網路中,針對不同延遲需求的服務提供交遞延遲預測,並根據預測結果和使用者需求建立繞送路徑。在我們研究中,我們使用網路微積分來分析交遞延遲的上界值,為了計算從閘道器傳輸封包到基地台的串聯系統延遲,我們延伸了現有的多工只付一次演算法(Pay Mul-tiplexing Only Once,PMOO),針對先進先出多優先序系統進行分析,為不同優先順序的使用者分別提供交遞延遲上限。最後則透過模擬來驗證我們提出的數學模型是可靠的,我們的研究顯示出網路微積分的延遲分析在次世代行動網路中將是非常具有影響力的。
With the great potential in flexible network provisioning, software-defined network (SDN) has been considered as one of the most promising network architectures in the next generation mobile networks. However, the rule management in SDN-enabled mobile networks becomes a challenging task due to rapid topology changes caused by user mobility. In order to reduce handoff delay, different prefetching approaches have been proposed. Even though these prefetching approaches are efficient, measuring handoff delay performance of these methods is an important open issue. Hence we aim to develop an analytical model to predict handoff delay and set up the routing path based on the predicted result and user requirement. For SDN-enabled mobile networks, we develop an analytical handoff delay performance model based on network calculus theory. In order to analyze the delay bound of the concatenation system from gateway to base stations, we adopt pay multiplexing only once method (PMOO) into first-in-first-out (FIFO) multi-priority system. Also, we derive the delay bound for each priority flow. The derived delay bounds in different network environments are validated by simulations. We show that the presented network-calculus-based delay analysis methodology can be effective in evaluating delay performance of communications systems.
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Glossary of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Software Defined Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Cache Missing Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Handoff Model in SDN-enabled Mobile Network . . . . . . . . . . . . . . . 6
3.2 Delay Analysis in Mobile Network . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Objective of This Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Handoff Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5. Network Calculus Based Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Busy Period Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Maximum Queue Length Approach . . . . . . . . . . . . . . . . . . . . . . 17
6 Handoff Delay Analysis of SDN-enabled Mobile Network without Rule Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Handoff Delay Bound with Part-by-Part Method . . . . . . . . . . . . . . . 19
6.2 Handoff Delay Bound Adopting Pay Multiplexing Only Once . . . . . . . . 20
6.3 Handoff Delay Bound with FIFO Analysis . . . . . . . . . . . . . . . . . . 26
7. Performance of Rule Prefetching Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 Handoff Delay Adopting Rule Prefetching Approach . . . . . . . . . . . . . 31
7.2 Guideline Adopting Rule Prefetching Approach . . . . . . . . . . . . . . . 35
8 .Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1 Influence of Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Influence of User Mobility and Bandwidth . . . . . . . . . . . . . . . . . . 45
8.3 Influence of Processing Rate of SDN Switch and Controller . . . . . . . . . 45
8.4 Comparison of Dierent Priority Flows . . . . . . . . . . . . . . . . . . . . 50
9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5g," IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014.
[2] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth,M. Schellmann, H. Schotten, H. Taoka, et al., “Scenarios for 5g mobile and wireless communications: the vision of the metis project," IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014.
[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.
Zhang, “What will 5g be?" IEEE Journal on selected areas in communications,
vol. 32, no. 6, pp. 1065-1082, 2014.
[4] N. A. Johansson, Y.-P. E.Wang, E. Eriksson, and M. Hessler, “Radio access for ultrareliable and low-latency 5g communications," in IEEE International Conference on Communication Workshop (ICCW), 2015, pp. 1184-1189.
[5] M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and V. Vukadinovic, “Channel coding for ultra-reliable low-latency communication in 5g systems," in IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1-5.
[6] H. Shariatmadari, S. Iraji, and R. Jantti, “Analysis of transmission methods for
ultra-reliable communications," in IEEE 26th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 2303-
2308.
[7] P. Popovski, “Ultra-reliable communication in 5g wireless systems," in IEEE 1st
International Conference on 5G for Ubiquitous Connectivity (5GU), 2014, pp. 146-
151.
[8] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani, “Sdn-based 5g mobile
networks: architecture, functions, procedures and backward compatibility," Transactions on Emerging Telecommunications Technologies, vol. 26, no. 1, pp. 82-92,
2015.
[9] R. Guerzoni, R. Trivisonno, and D. Soldani, “Sdn-based architecture and procedures for 5g networks," in IEEE 1st International Conference on 5G for Ubiquitous Connectivity (5GU), 2014, pp. 209-214.
[10] C. Bouras, A. Kollia, and A. Papazois, “SDN & NFV in 5g: Advancements and challenges," in IEEE 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 107-111.
[11] S. Kuklinski, Y. Li, and K. T. Dinh, “Handover management in SDN-based mobile networks," in IEEE Globecom Workshops (GC Wkshps), 2014, pp. 194-200.
[12] G. Araniti, J. Cosmas, A. Iera, A. Molinaro, R. Morabito, and A. Orsino, “Openflow overc wireless networks: Performance analysis," in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2014, pp. 1-5.
[13] L. Valtulina, M. Karimzadeh, G. Karagiannis, G. Heijenk, and A. Pras, “Performance evaluation of a SDN/Openow-based distributed mobility management (DMM) approach in virtualized lte systems," in IEEE Globecom Workshops (GC Wkshps), 2014, pp. 18-23.
[14] V.-G. Nguyen and Y. Kim, “Proposal and evaluation of SDN-based mobile packet core networks," EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1, pp. 1-18.
[15] J. Prados-Garzon, O. Adamuz-Hinojosa, P. Ameigeiras, J. J. Ramos-Munoz,
P. Andres-Maldonado, and J. M. Lopez-Soler, “Handover implementation in a 5g
SDN-based mobile network architecture," in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016, pp.1-6.
[16] V. Yazc, U. C. Kozat, and M. O. Sunay, “A new control plane for 5g network architecture with a case study on unified handoff, mobility, and routing management,"
IEEE Communications Magazine, vol. 52, no. 11, pp. 76-85, 2014.
[17] S. A. Shah, J. Faiz, M. Farooq, A. Sha, and S. A. Mehdi, “An architectural evaluation of SDN controllers," in IEEE International Conference on Communications (ICC), 2013, pp. 3504-3508.
[18] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On controller performance in software-defined networks," in Presented as part of the 2nd
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, 2012.
[19] A. Gelberger, N. Yemini, and R. Giladi, “Performance analysis of software-defined networking (SDN)," in IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, 2013, pp. 389-393.
[20] H. Li, S. Guo, C. Wu, and J. Li, “Fdrc: Flow-driven rule caching optimization in
software defined networking," in IEEE International Conference on Communications
(ICC), 2015, pp. 5777-5782.
[21] M. Dong, H. Li, K. Ota, and J. Xiao, “Rule caching in SDN-enabled mobile access networks," IEEE Network, vol. 29, no. 4, pp. 40-45, 2015.
[22] J. Wen and V. O. Li, “Data prefetching to reduce delay in software-defined cellular networks," in IEEE 26th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2015, pp. 1845-1849.
[23] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking (SDN): A reference architecture and open apis," in IEEE International Conference on ICT
Convergence (ICTC), 2012, pp. 360-361.
[24] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined networking: Past, present, and future of programmable networks," IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634,
2014.
[25] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules placement problem in openflow networks: a survey," IEEE Communications Surveys & Tutorials, vol. 18,
no. 2, pp. 1273-1286, 2016.
[26] X. Duan and X. Wang, “Authentication handover and privacy protection in 5g hetnets using software-defined networking," IEEE Communications Magazine, vol. 53, no. 4, pp. 28-35, 2015.
[27] H. Li, P. Li, and S. Guo, “Morule: Optimized rule placement for mobile users in SDN-enabled access networks," in IEEE Global Communications Conference (GLOBE-COM), 2014, pp. 4953-4958.
[28] S. Sharma, A. Singh, S. Singh, and R. Kaur, “SDN-based mobile access networks: upcoming technology," in IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 2823-2826.
[29] H. Wang, S. Chen, M. Ai, and X. Hui, “Localized mobility management for 5g ultra dense network," IEEE Transactions on Vehicular Technology, 2017.
[30] D. Han, S. Shin, H. Cho, J.-m. Chung, D. Ok, and I. Hwang, “Measurement and stochastic modeling of handover delay and interruption time of smartphone real-time applications on LTE networks," IEEE Communications Magazine, vol. 53, no. 3, pp.
173-181, 2015.
[31] M. Liyanage, A. Gurtov, and M. Ylianttila, Software Defined Mobile Networks
(SDMN): Beyond LTE Network Architecture. John Wiley & Sons, 2015.
[32] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Simeonidou, “An analytical model for software defined networking: A network calculus based approach," in IEEE Global Communications Conference (GLOBECOM), 2013,
pp. 1397-1402.
[33] Q. Duan, “Network-as-a-service in software-defined networks for end-to-end QoS provisioning," in IEEE 23rd Wireless and Optical Communication Conference (WOCC), 2014, pp. 1-5.
[34] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A software defined networking architecture for the internet-of-things," in IEEE Network
Operations and Management Symposium (NOMS), 2014, pp. 1-9.
[35] A. G. Osgouei, A. K. Koohanestani, H. Saidi, and A. Fanian, “Analytical performance model of virtualized SDNs using network calculus," in IEEE 23rd Iranian Conference on Electrical Engineering (ICEE), 2015, pp. 770-774.
[36] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality of service with software defined networking," in IEEE 3rd International Conference on Cloud Networking (CloudNet), 2014, pp. 70-76.
[37] C. Lin, C. Wu, M. Huang, Z. Wen, and Q. Zheng, “Performance evaluation for
SDN deployment: an approach based on stochastic network calculus," IEEE China
Communications, vol. 13, no. Supplement, pp. 98-106, 2016.
[38] S. Bondorf and J. B. Schmitt, “Boosting sensor network calculus by thoroughly bounding cross-traffic," in IEEE Conference on Computer Communications (INFO-
COM), 2015, pp. 235-243.
[39] W. Liu, D. Zhao, and G. Zhu, “End-to-end delay and packet drop rate performance for a wireless sensor network with a cluster-tree topology," Wireless Communications and Mobile Computing, vol. 14, no. 7, pp. 729-744, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔