跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林竣義
研究生(外文):Lin, Chun-Yi
論文名稱:具雜訊抑制之多頻段與超寬頻通訊射頻接收電路的設計與分析
論文名稱(外文):Design and analysis of RF front-end circuits with noise reduction for ultra-wideband and multi-band communication systems
指導教授:唐震寰唐震寰引用關係鍾世忠鍾世忠引用關係
指導教授(外文):Tarng, Jenn-HwanChung, Shyh-Jong
口試委員:邱煥凱張志揚張鴻埜鍾世忠周詠晃唐震寰
口試委員(外文):Chiou, Hwann-KaeoChang, Chi-YangChang, Hong-YehChung, Shyh-JongChou, Young-HuangTarng, Jenn-Hwan
口試日期:2018-03-14
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:79
中文關鍵詞:雜訊抑制多頻段超寬頻射頻接收電路
外文關鍵詞:noise reductionmulti-bandultra-widebandRF front-end circuits
相關次數:
  • 被引用被引用:0
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了幾種具雜訊抑制的超寬頻與多頻段電路設計,其中包含了 (1) 超寬頻低雜訊放大器的分析與設計;(2) 降低相位雜訊技術的電流再利用壓控振盪器電路; (3) 使用諧振切換的三頻帶低雜訊放大器;(4) 利用主動式電感設計的三頻帶拒濾波器。
首先我們在超寬頻低雜訊放大器中,額外引入一阻值較大的基極電阻,以避免雜訊從電晶體的基極端交互流竄而惡化電路本身的雜訊指數特性。在不額外增加晶片面積、製程步驟、以及直流功率損耗的前提之下,採用此雜訊降低電阻於操作頻帶時,能達到30%的雜訊指數改善效果。當輸入回返損耗 (input return loss) 大於10 dB以上時,其頻帶內最大增益為14.5 dB,最小雜訊指數為1.6 dB,且總直流功率損耗僅為4.5 mW。
另外本論文提出一個具降低相位雜訊參數之電流再利用壓控振盪器電路,藉由改善傳統電流再利用壓控振盪器天生的差動振幅不匹配的問題,可以透過電路技巧,將差動輸出的兩端振幅精準匹配,並且透過新式架構的優點,同時將系統電源VDD降低,藉此同時達到低電壓操作、低功耗、高性能以及差動振幅匹配等優點。整體電路性能參數FOM (figure of merit) 為 -187 dBc/Hz,使用電壓為1.3V,直流電流為2.3 mA,直流功率消耗為2.99 mW,而在1 MHz offset時其相位雜訊約為-114 dBc/Hz。
多頻帶系統部分,本論文探討一個藉由切換的概念來實現三頻帶低雜訊放大器的操作,其能有效地減少系統面積來降低製作的成本,並且於第二個多頻帶低雜訊放大器設計中,利用回授式雜訊相消電路能同時達到輸入匹配以及改善雜訊指數的效果。在此設計電路同時導入基極電阻來抑制雜訊,採用此雜訊降低電阻於2.5 GHz操作頻帶時,能達到32%的雜訊指數改善效果。
在頻帶干擾的雜訊抑制部分,本論文採用主動式電感來完成一個三頻帶拒濾波器,其能大幅減少傳統螺旋式電感製作的面積成本,並具有高品質因子的優點。整體電路性能在2.4 /3.4 /4.9 GHz,分別具有23/ 24/ 31dB的雜訊抑制能力。
In this dissertation, the design methodologies and implementations of RF receiver circuits for multiband and ultra-wideband communication applications are proposed. There are four parts in this thesis, including: (1) the analysis and design of ultra wideband (UWB) low-noise amplifier (LNA), (2) the design of a current-reused voltage-controlled oscillator (CRVCO) with amplitude-balanced technique and phase-noise improvement, (3) the design of triple-band LNA using switched resonators and a noise cancelation technique, and (4) the design of triple band-notched filter with active inductor.
First of all, the design of UWB LNA implemented using 0.18-μm CMOS technology is presented. Increasing the resistance of the substrate resistor RB reduces the noise factor. When additional substrate resistors and a composite feedback topology are employed, the proposed LNA can achieve both a 1.4 dB reduction of the noise figure (NF) and a 4 dB enhancement in power gain (PG). A considerable noise power diminution in MOS devices with an additional larger substrate resistor is presented, 30% noise reduction of MOS devices can be achieved without extra chip area, CMOS process steps and dc power. Over the operating frequency range from 3.1 to 4.8 GHz, the LNA achieves a maximum PG of 14.5 dB, a minimum NF of 1.5 dB, and an input return loss of less than 10 dB. The measured current consumption is 3 mA with a 1.5 V supply voltage.
Secondly, a CRVCO with amplitude-balanced technique is designed for UWB applications and implemented in TSMC 0.18μm 1P6M CMOS technology. An extra cascode cross-coupled pair is adopted, which is used to improve the difference between the differential output amplitudes of CRVCO. After that, the coupling capacitor is employed to acquire a better phase noise. Finally, an extra cross-coupled pair is adopted to provide extra negative transconductance, therefore, the proposed CRVCO can also be operated under low voltage condition. The measured amplitude imbalance ratio is less than 0.15%. The measured phase noise is -114 dBc/Hz at 1MHz offset when oscillation frequency is at 7.8 GHz, resulting in an FOM of -187 dBc/Hz at a 1.3V supply voltage..
Thirdly, this thesis presents a triple-band LNA fabricated using a 0.18-μm CMOS process. The LNA uses a double-peak load network with a switched component to accomplish the triple-band operation. Moreover, noise reduction using a substrate resistor to ameliorate the noise performance is presented. Noise reduction of 1.5 dB can be achieved at 2.5 GHz without additional dc power and extra manufacturing costs. An input matching technique is realized simultaneously using a gyrator-based feedback topology. The triple-band LNA can be realized by using a dual-band input network with a switched matching mechanism. The target frequencies of the triple-band LNA are 2.3–2.7 GHz, 3.4–3.8 GHz, and 5.1–5.9 GHz, covering the operating frequency bands of time-division long-term revolution (TD-LTE), LTE-unlicensed (LTE-U) band, and WLAN technology. The measured power gains and noise figures at 2.5, 3.5, and 5.2 GHz are 12.3, 15.3, and 13.1 dB and 2.3, 2.2, and 2.6 dB, respectively.
Finally, an active triple band-notched filter with improved quality factor (Q-factor) in 0.18-μm CMOS technology are presented. Due to the FCC’s stringent power-emission limitation at the transmitter, the received signal power in the UWB system is smaller than those in IEEE 802.11 a/b/g wireless local area network (WLAN), the worldwide interoperability for microwave access (WiMAX), TD-LTE and LTE-unlicensed (LTE-U) band. To avoid the interferences such as the WLAN and WiMAX signals in the UWB passband simultaneously, the proposed band-notched filter can be adopted to eliminate these interferences. The 23/24/31 dB maximum rejections at 2.4/3.5/4.9 GHz while consuming a dc power of 13.5 mW at 1.8-V power supply.
ABSTRACT (Chinese) i
ABSTRACT (English) iii
ACHNOWLEDGEMENT vi
CONTENTS vii
TABLE CAPTIONS ix
FIGURE CAPTIONS x

CHAPTER 1 INTRODUCTION
1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Organization 4

CHAPTER 2 COMPACT COMPOSITE NOISE-REDUCTION LNA FOR UWB WPAN AND WBAN APPLICATIONS 6
2.1 Introduction 6
2.2 Noise-Reduction LNA 8
2.3 Noise Analysis 11
2.4 Circuit Analysis and Implement 14
2.5 Measurement 21
2.6 Summary 23

CHAPTER 3 A Low-Power Low-Voltage Current-Reused Voltage-Controlled Oscillator with Amplitude-Balanced Technique 24
3.1 Introduction 24
3.2 The Proposed CRVCO 27
3.2.1 The amplitude-balanced technique 28
3.2.2 Improvement on phase noise with coupling capacitor 28
3.3 The Measurement Results 31
3.4 Summary 34



CHAPTER 4 Switched Triple-Band Low-Noise Amplifier Using a Gyrator-Based Matching Network for TD-LTE/LTE-U and WLAN Applications 35
4.1 Introduction 35
4.2 Circuit Design and Analysis 37
4.2.1 Circuit Design and Analysis 38
4.2.2 Conventional Gyrator-based Active Inductor and Proposed Gyrator-based Triple-Band Input
Matching Network 41
4.2.3 Proposed Switched-resonator Triple-band Load Network 45
4.3 Proposed Switched Triple-band LNA 49
4.4 Measurement Results 50
4.5 Summary 53

CHAPTER 5 An Active Triple Band-Notched Filter with Improved Q-Factor for UWB System 55
5.1 Introduction 55
5.2 The Active Inductor with a Feedback Resistor for Q-Factor Improvement 57
5.3 The Outband Rejection Filter with a Parallel Capacitor for Q-Factor Improvement 61
5.4 The Topology of Proposed Active Triple Band-Notched Filter and the Measured Result 63
5.5 Summary 64

CHAPTER 6 Conclusions 67
REFERENCES 70
VITA 78
PUBLICATION LIST 79
[1] Niemelä, V., Haapola, J., Hämäläinen, M., Iinatti, J.: 'An ultra wideband survey: global regulations and impulse radio research based on standards', IEEE Commun. Surveys Tuts., 2017, 19, (2), pp. 874–890
[2] IEEE Standard 802.15.4-2015: 'IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)', 2016
[3] IEEE Standard 802.15.6-2012: 'IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks', 2012
[4] Darif, A., Saadane, R., Aboutajdine, D.: 'An efficient short range wireless communication technology for wireless sensor network', Proc. 3rd IEEE Int. Colloquium Inf. Sci. Technol. (CIST), Tetouan, Morocco, Oct. 2014, pp. 396–401
[5] Manchi, P. K., Paily, R., Gogoi, A. K.: 'Low power digital baseband transceiver design for UWB physical layer of IEEE 802.15.6 standard', IEEE Trans. Ind. Informat., 2017, PP, (99), pp. 1–10
[6] Roy, S., Foerster, J. R., Somayazulu, V. S., Leeper, D. G.: 'Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity ', Proc. IEEE, 2004, 92, (2), pp. 295–311
[7] Na, K., Jang, H., Ma, H., Choi, Y., et al.: 'A 200-Mb/s data rate 3.1–4.8-GHz IR-UWB all-digital pulse generator with DB-BPSK modulation', IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (12), pp. 1184–1188
[8] Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., et al.: 'A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector', IEEE Trans. Circuits Syst. I, Reg. Papers, 2017, 64, (6), pp. 1612–1625
[9] Park, M. C., Chang, W. I., Lee, K. H., Kim, D. -S., et al.: 'A fully integrated 0.18um CMOS UWB SoC for wireless body area network applications', Proc. IEEE Radio Freq. Integr. Circuits Symp., Phoenix, USA, May 2015, pp. 247–250
[10] Lai, M.-T., Tsao, H.-W.: 'Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization', IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 1934–1945
[11] Ye, R.-F., Horng, T.-S., Wu, J.-M.: 'Low-Noise and High-Linearity Wideband CMOS Receiver Front-End Stacked With Glass Integrated Passive Devices', IEEE Trans. Microw. Theory Tech, 2014, 62, (5), pp. 1229–1238
[12] Chen, C.-C., Lin, Y.-S., Huang, P.-L., et al.: 'A 4.9-dB NF 53.5-62-GHz micro-machined CMOS wideband LNA with small group-delay-variation'. IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, USA, May 2010, pp. 489–492
[13] Belostotski, L., Madanayake, A., Bruton, L. T.: 'Wideband LNA with an active -C element', IEEE Microw. Wireless Compon. Lett., 2012, 22, (10), pp. 524–526
[14] Moezzi, M., Bakhtiar, M. S.: 'Wideband LNA using active inductor with multiple feed-forward noise reduction paths', IEEE Trans. Microw. Theory Tech, 2012, 60, (4), pp. 1069–1078
[15] Hedayati, H., Lau, W.-F. A., Kim, N., et al.: 'A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS cross-coupled transistor pair', IEEE J. Solid-State Circuits, 2015, 50, (5), pp. 1148–1164
[16] Wang, X., Sturm, J., Yan, N., et al.: '0.6–3-GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA', IEEE Trans. Microw. Theory Tech, 2012, 60, (2), pp. 387–392
[17] Chen, K.-H., Liu, S.-I: 'Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique', IEEE Trans. Circuits Syst. I, Reg. Papers, 2012, 59, (2), pp.305–314
[18] El-Nozahi, M., Helmy, A. A., Sánchez-Sinencio, E., et al.: 'An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS Technology ', IEEE J. Solid-State Circuits, 2011, 46, (5), pp. 1111–1122
[19] Lee, H., Chung, T., Seo, H., et al.: 'A Wideband Differential Low-Noise-Amplifier With IM3 Harmonics and Noise Canceling', IEEE Microw. Wireless Compon. Lett., 2015, 25, (1), pp. 46–48
[20] Han, H. G., Jung, D. H., Kim, T. W.: 'A 2.88 mW + 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback ', IEEE Trans. Microw. Theory Tech, 2015, 63, (3), pp. 1019–1025
[21] Slimane, A., Haddad, F., Bourdel, S., et al.: 'Compact inductorless CMOS low-noise amplifier for reconfigurable radio', IET lectron. Lett., 2014, 50, (12), pp. 892–893
[22] Chung, T., Lee, H., Jeong, D., et al.: 'A wideband CMOS noise-canceling low-noise amplifier with high linearity', IEEE Microw. Wireless Compon. Lett., 2015, 25, (8), pp. 547–549
[23] Lin, Y.-S., Wang, C.-C., Lee, G.-L., et al.: 'High-performance wideband low-noise amplifier using enhanced π-Match Input Network', IEEE Microw. Wireless Compon. Lett., 2014, 24, (3), pp. 200–202
[24] Ye, R.-F., Horng, T.-S, Wu, J.-M.: 'Two CMOS dual-feedback common-gate low-noise amplifiers with wideband input and noise matching', IEEE Trans. Microw. Theory Tech, 2013, 61, (10), pp. 3690–3699, Oct
[25] Lin, Y.-S.: 'An analysis of small-signal source-body resistance effect on RF MOSFETs for low-cost system-on-chip (SoC) applications,” IEEE Trans. Electron Devices, 2005, 52, (7), pp.1442–1451.
[26] Razavi, B.: 'Design of Analog CMOS Integrated Circuits' (McGraw-Hill Education, 2000.)
[27] Khatri, H., Gudem, P. S., Larson, L. E.: 'Integrated RF interference suppression filter design using bond-wire inductors', IEEE Trans. Microw. Theory Tech., 2008, 56, (5), pp. 1024–1034
[28] Feng, C., Yu, X. P., Lim, W. M., et al.: 'A Compact 2.1–39 GHz Self-Biased Low-Noise Amplifier in 65 nm CMOS Technology', IEEE Microw. Wireless Compon. Lett., 2013, 23, (12), pp. 662–664
[29] Leung, H. F., Luong, H. C.: 'A 1.2-6.6GHz LNA using transformer feedback for wideband input matching and noise cancellation in 0.13μm CMOS'. Proc. IEEE Radio Freq. Integr. Circuits Symp., Montreal, Canada, June 2012, pp. 17–20.
[30] Lee, H.-C, Wang, C.-S., Wang, C.-K.: 'A 0.2–2.6 GHz wideband noise-reduction gm-boosted LNA', IEEE Microw. Wireless Compon. Lett., 2012, 22, (5), pp. 269–271
[31] Yun, S. J., Shin, S. B., Choi, H. C., Lee, S. G.: 'A 1mW current-reuse CMOS differential LC-VCO with low phase noise'. Proc. IEEE ISSCC Dig. Tech. Papers, , CA, USA, Feb. 2005, pp. 540–616.
[32] Chan, W. L., Long, J. R.: 'A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS', IEEE Trans. on Microw. Theory and Tech., 2008, 56, (8), pp. 2739–2746
[33] Behbahani, F., Kishigami, Y., Leete, J., Abidi, A. A.: 'CMOS mixers and polyphase filters for large image rejection', IEEE J. of Solid-State Circuits, 2001, 36, (6), pp. 873–887
[34] Wei, M. D., Chang, S. F., Huang, S. W.: 'An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique', IEEE Microw. Wireless Comp. Lett., 2009, 19, (6), pp. 395–397
[35] Park, B., Lee, Choi, S., S., Hong, S.: 'A 12-GHz fFully integrated cascode CMOS LC VCO with Q-enhancement circuit', IEEE Microw. Wireless Comp. Lett., 2008, 18, (2), pp. 133–135
[36] Wei, M. D., Chang, S. F., Huang, S. W., et al.: 'Investigation of sub-milliwatt current-reuse VCOs with mono-spontaneous transconductance match technique', IEEE Trans. on Microw. Theory and Tech., 2014, 56, (2), pp. 332–340
[37] ‘4G Wireless broadband industry white paper’, http:// http://lte-tdd.org/d/file/Resources/rep/2017-03-01/00c1864037fd2e95525cc46da3919e99.pdf, accessed 1 March 2017
[38] Ye, Y., Wu, D., Shu, Z., et al.:'Overview of LTE spectrum sharing technologies', IEEE Access, 2016, 4, pp.8105–8115.
[39] Wang, X., Quek, T. Q. S., Sheng, M., et al.: 'Throughput and fairness analysis of Wi-Fi and LTE-U in unlicensed band', IIEEE J. Sel. Areas Commun., 2017, 35, (1), pp.63–78.
[40] Hamidouche, K., Saad, W., Debbah, M.: ' A multi-game framework for harmonized LTE-U and WiFi coexistence over unlicensed bands', IEEE Trans. Wireless Commun., 2016, 23, (6), pp.62–69
[41] Maksymyuk, T., Kyryk, M., Jo, M.: ' Comprehensive spectrum management for heterogeneous networks in LTE-U', IEEE Trans. Wireless Commun., 2016, 23, (6), pp.8–15
[42] Ingels, M., Giannini, V., Borremans, J., et al.: 'A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform', IEEE J. Solid-State Circuits, 2010, 45, (12), pp.2794–2806
[43] Xie, H., Oliaei, O., Rakers,, P., et al.: 'Single-chip multiband EGPRS and SAW-less LTE WCDMA CMOS receiver with diversity', EEE Trans. Microw. Theory Techn., 2012, 60, (5), pp.1390–1396
[44] Analui, B., Mercer, T., Mandegaran, S., et al.:' A 50 MHz–6 GHz, 2 × 2 MIMO, reconfigurable architecture, software-defined radio in 130nm CMOS', Proc. IEEE Radio Freq. Integr. Circuits Symp., FL, USA, July 2014, pp. 329–332
[45] Neihart, N. M., Brown, J., Yu, X.: 'A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network', IEEE Trans. Circuits Syst. I Reg. Papers, 2012, 59, (8), pp. 1743–1751
[46] ‘LTE TDD—the global solution for unpaired spectrum’, https://www.qualcomm.com/documents/lte-tdd-global-solution-unpaired-spectrum, accessed 19 August 2013
[47] Thanachayanont, A., Payne, A.: ' VHF CMOS integrated active inductor', IET Electron. Lett., 1996, 32, (11), pp. 999–1000
[48] Gu, Q.: ' RF System Design of Transceivers for Wireless Communications' (Springer, 2005)
[49] ETSI TR 136 931 v14.0.0, 'LTE; Evolved Universal Terrestrial Radio Access (EUTRA); Radio frequency (RF) requirements for LTE Pico Node B' (3GPP, 2017)
[50] Jayaraman, K., Khan, Q., Chi, B., et al.: 'A self-healing 2.4GHz LNA with on-chip S11/S21 measurement/calibration for in-situ PVT compensation', Proc. IEEE Radio Freq. Integr. Circuits Symp., CA, USA, May 2010, pp. 311–314
[51] Adom-Bamfi, G., Entesari K.: 'A multiband low noise amplifier with a switchable Gm active shunt feedback for SDRs'. Proc. IEEE Radio and Wireless Symp., TX, USA, Jan. 2016, pp. 179–182
[52] Fu, C.-T., Ko, C.-L., Kuo, C.-N., et al.: 'A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier', IEEE Trans. Microw. Theory Techn., 2008, 56, (12), pp. 2754–2763
[53] Yu, X., Neihart, N. M.: 'Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer', IEEE Trans. Microw. Theory Techn., 2013, 61, (3), pp. 1236–1246
[54] Lim, K., Min, S., Lee, S., et al.: 'A 2x2 MIMO tri-band dual-mode direct-conversion CMOS transceiver for worldwide WiMAX/WLAN applications', IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 1648–1658
[55] Lee, J.-Y., Park, H.-K., Chang, H.-J., et al.: 'Low-Power UWB LNA with common-gate and current reuse techniques', IET Microw. Antennas Propag., 2012, 6, (7), pp. 793–799
[56] Lo, S., Sever, I., Ma, S.-P., et al.: 'A dual-antenna phased-array UWB transceiver in 0.18-m CMOS', IEEE J. Solid- State Circuits, 2006, 41, (12), pp. 2776–2786
[57] Fischer, T. W., Kelleci, B., Shi, K., et al.: 'An analog approach to suppressing in-band narrow-band interference in UWB receivers', IEEE Trans. Circuits Syst. I, Reg. Papers, 2007, 44, (5), pp. 941–950
[58] Ghosh, A., Walter, D.R., Andrews, J.G., Chen, R.: 'Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential', IEEE Communications Magazine, 2005, 43, (2), pp. 129–136
[59] Rambabu, K., Chia, M. Y.-W., Chan, K. M., Bornemann, J.: 'Design of multiple-stopband filters for interference suppression in UWB applications', IEEE Trans. Microw. Theory Tech, 2006, 54, (8), pp. 3333–3338
[60] Luo, X., Ma, J.-G., Yeo, K. S., Li, E.-P.: 'Compact ultra-wideband (UWB) bandpass filter with ultra-narrow dual- and quad-notched bands', IEEE Trans. Microw. Theory Tech, 2011, 59, (6), pp. 1509–1519
[61] Liang, C.-P, Rao, P.-Z., Huang, T.-J., Chung, S.-J.: 'Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection', IEEE Trans. Microw. Theory Tech, 2010, 58, (2), pp. 277–286
[62] Nguyen, T.-K., Oh, N.-J., Cha, C.-Y., et al.: 'Image-rejection CMOS low-noise amplifier design optimization techniques', IEEE Trans. Microw. Theory Tech, 2005, 53, (2), pp. 538–547
[63] Liang, C.-P, Rao, P.-Z., Huang, T.-J., Chung, S.-J.: 'A 2.45/5.2 GHz image rejection mixer with New dual-band active notch filter', IEEE Microw. Wireless Compon. Lett., 2009, 19, (11), pp. 716–718
[64] Hsiao, C.-C., Kuo, C.-W., Ho, C.-C., Chan, Y.-J.: 'Improved quality-factor of 0.18-m CMOS active inductor by a feedback resistance design', IEEE Microw. Wireless Compon. Lett., 2002, 12, (12), pp. 467–469
[65] Hsieh, H.-H., Liao, Y.-T., Lu, L.-H.: 'A Compact Quadrature Hybrid MMIC Using CMOS Active Inductors', IEEE Trans. Microw. Theory Tech, 2017, 55, (6), pp. 1098–1104
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top