|
[1] Niemelä, V., Haapola, J., Hämäläinen, M., Iinatti, J.: 'An ultra wideband survey: global regulations and impulse radio research based on standards', IEEE Commun. Surveys Tuts., 2017, 19, (2), pp. 874–890 [2] IEEE Standard 802.15.4-2015: 'IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)', 2016 [3] IEEE Standard 802.15.6-2012: 'IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks', 2012 [4] Darif, A., Saadane, R., Aboutajdine, D.: 'An efficient short range wireless communication technology for wireless sensor network', Proc. 3rd IEEE Int. Colloquium Inf. Sci. Technol. (CIST), Tetouan, Morocco, Oct. 2014, pp. 396–401 [5] Manchi, P. K., Paily, R., Gogoi, A. K.: 'Low power digital baseband transceiver design for UWB physical layer of IEEE 802.15.6 standard', IEEE Trans. Ind. Informat., 2017, PP, (99), pp. 1–10 [6] Roy, S., Foerster, J. R., Somayazulu, V. S., Leeper, D. G.: 'Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity ', Proc. IEEE, 2004, 92, (2), pp. 295–311 [7] Na, K., Jang, H., Ma, H., Choi, Y., et al.: 'A 200-Mb/s data rate 3.1–4.8-GHz IR-UWB all-digital pulse generator with DB-BPSK modulation', IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (12), pp. 1184–1188 [8] Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., et al.: 'A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector', IEEE Trans. Circuits Syst. I, Reg. Papers, 2017, 64, (6), pp. 1612–1625 [9] Park, M. C., Chang, W. I., Lee, K. H., Kim, D. -S., et al.: 'A fully integrated 0.18um CMOS UWB SoC for wireless body area network applications', Proc. IEEE Radio Freq. Integr. Circuits Symp., Phoenix, USA, May 2015, pp. 247–250 [10] Lai, M.-T., Tsao, H.-W.: 'Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization', IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 1934–1945 [11] Ye, R.-F., Horng, T.-S., Wu, J.-M.: 'Low-Noise and High-Linearity Wideband CMOS Receiver Front-End Stacked With Glass Integrated Passive Devices', IEEE Trans. Microw. Theory Tech, 2014, 62, (5), pp. 1229–1238 [12] Chen, C.-C., Lin, Y.-S., Huang, P.-L., et al.: 'A 4.9-dB NF 53.5-62-GHz micro-machined CMOS wideband LNA with small group-delay-variation'. IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, USA, May 2010, pp. 489–492 [13] Belostotski, L., Madanayake, A., Bruton, L. T.: 'Wideband LNA with an active -C element', IEEE Microw. Wireless Compon. Lett., 2012, 22, (10), pp. 524–526 [14] Moezzi, M., Bakhtiar, M. S.: 'Wideband LNA using active inductor with multiple feed-forward noise reduction paths', IEEE Trans. Microw. Theory Tech, 2012, 60, (4), pp. 1069–1078 [15] Hedayati, H., Lau, W.-F. A., Kim, N., et al.: 'A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS cross-coupled transistor pair', IEEE J. Solid-State Circuits, 2015, 50, (5), pp. 1148–1164 [16] Wang, X., Sturm, J., Yan, N., et al.: '0.6–3-GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA', IEEE Trans. Microw. Theory Tech, 2012, 60, (2), pp. 387–392 [17] Chen, K.-H., Liu, S.-I: 'Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique', IEEE Trans. Circuits Syst. I, Reg. Papers, 2012, 59, (2), pp.305–314 [18] El-Nozahi, M., Helmy, A. A., Sánchez-Sinencio, E., et al.: 'An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS Technology ', IEEE J. Solid-State Circuits, 2011, 46, (5), pp. 1111–1122 [19] Lee, H., Chung, T., Seo, H., et al.: 'A Wideband Differential Low-Noise-Amplifier With IM3 Harmonics and Noise Canceling', IEEE Microw. Wireless Compon. Lett., 2015, 25, (1), pp. 46–48 [20] Han, H. G., Jung, D. H., Kim, T. W.: 'A 2.88 mW + 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback ', IEEE Trans. Microw. Theory Tech, 2015, 63, (3), pp. 1019–1025 [21] Slimane, A., Haddad, F., Bourdel, S., et al.: 'Compact inductorless CMOS low-noise amplifier for reconfigurable radio', IET lectron. Lett., 2014, 50, (12), pp. 892–893 [22] Chung, T., Lee, H., Jeong, D., et al.: 'A wideband CMOS noise-canceling low-noise amplifier with high linearity', IEEE Microw. Wireless Compon. Lett., 2015, 25, (8), pp. 547–549 [23] Lin, Y.-S., Wang, C.-C., Lee, G.-L., et al.: 'High-performance wideband low-noise amplifier using enhanced π-Match Input Network', IEEE Microw. Wireless Compon. Lett., 2014, 24, (3), pp. 200–202 [24] Ye, R.-F., Horng, T.-S, Wu, J.-M.: 'Two CMOS dual-feedback common-gate low-noise amplifiers with wideband input and noise matching', IEEE Trans. Microw. Theory Tech, 2013, 61, (10), pp. 3690–3699, Oct [25] Lin, Y.-S.: 'An analysis of small-signal source-body resistance effect on RF MOSFETs for low-cost system-on-chip (SoC) applications,” IEEE Trans. Electron Devices, 2005, 52, (7), pp.1442–1451. [26] Razavi, B.: 'Design of Analog CMOS Integrated Circuits' (McGraw-Hill Education, 2000.) [27] Khatri, H., Gudem, P. S., Larson, L. E.: 'Integrated RF interference suppression filter design using bond-wire inductors', IEEE Trans. Microw. Theory Tech., 2008, 56, (5), pp. 1024–1034 [28] Feng, C., Yu, X. P., Lim, W. M., et al.: 'A Compact 2.1–39 GHz Self-Biased Low-Noise Amplifier in 65 nm CMOS Technology', IEEE Microw. Wireless Compon. Lett., 2013, 23, (12), pp. 662–664 [29] Leung, H. F., Luong, H. C.: 'A 1.2-6.6GHz LNA using transformer feedback for wideband input matching and noise cancellation in 0.13μm CMOS'. Proc. IEEE Radio Freq. Integr. Circuits Symp., Montreal, Canada, June 2012, pp. 17–20. [30] Lee, H.-C, Wang, C.-S., Wang, C.-K.: 'A 0.2–2.6 GHz wideband noise-reduction gm-boosted LNA', IEEE Microw. Wireless Compon. Lett., 2012, 22, (5), pp. 269–271 [31] Yun, S. J., Shin, S. B., Choi, H. C., Lee, S. G.: 'A 1mW current-reuse CMOS differential LC-VCO with low phase noise'. Proc. IEEE ISSCC Dig. Tech. Papers, , CA, USA, Feb. 2005, pp. 540–616. [32] Chan, W. L., Long, J. R.: 'A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS', IEEE Trans. on Microw. Theory and Tech., 2008, 56, (8), pp. 2739–2746 [33] Behbahani, F., Kishigami, Y., Leete, J., Abidi, A. A.: 'CMOS mixers and polyphase filters for large image rejection', IEEE J. of Solid-State Circuits, 2001, 36, (6), pp. 873–887 [34] Wei, M. D., Chang, S. F., Huang, S. W.: 'An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique', IEEE Microw. Wireless Comp. Lett., 2009, 19, (6), pp. 395–397 [35] Park, B., Lee, Choi, S., S., Hong, S.: 'A 12-GHz fFully integrated cascode CMOS LC VCO with Q-enhancement circuit', IEEE Microw. Wireless Comp. Lett., 2008, 18, (2), pp. 133–135 [36] Wei, M. D., Chang, S. F., Huang, S. W., et al.: 'Investigation of sub-milliwatt current-reuse VCOs with mono-spontaneous transconductance match technique', IEEE Trans. on Microw. Theory and Tech., 2014, 56, (2), pp. 332–340 [37] ‘4G Wireless broadband industry white paper’, http:// http://lte-tdd.org/d/file/Resources/rep/2017-03-01/00c1864037fd2e95525cc46da3919e99.pdf, accessed 1 March 2017 [38] Ye, Y., Wu, D., Shu, Z., et al.:'Overview of LTE spectrum sharing technologies', IEEE Access, 2016, 4, pp.8105–8115. [39] Wang, X., Quek, T. Q. S., Sheng, M., et al.: 'Throughput and fairness analysis of Wi-Fi and LTE-U in unlicensed band', IIEEE J. Sel. Areas Commun., 2017, 35, (1), pp.63–78. [40] Hamidouche, K., Saad, W., Debbah, M.: ' A multi-game framework for harmonized LTE-U and WiFi coexistence over unlicensed bands', IEEE Trans. Wireless Commun., 2016, 23, (6), pp.62–69 [41] Maksymyuk, T., Kyryk, M., Jo, M.: ' Comprehensive spectrum management for heterogeneous networks in LTE-U', IEEE Trans. Wireless Commun., 2016, 23, (6), pp.8–15 [42] Ingels, M., Giannini, V., Borremans, J., et al.: 'A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform', IEEE J. Solid-State Circuits, 2010, 45, (12), pp.2794–2806 [43] Xie, H., Oliaei, O., Rakers,, P., et al.: 'Single-chip multiband EGPRS and SAW-less LTE WCDMA CMOS receiver with diversity', EEE Trans. Microw. Theory Techn., 2012, 60, (5), pp.1390–1396 [44] Analui, B., Mercer, T., Mandegaran, S., et al.:' A 50 MHz–6 GHz, 2 × 2 MIMO, reconfigurable architecture, software-defined radio in 130nm CMOS', Proc. IEEE Radio Freq. Integr. Circuits Symp., FL, USA, July 2014, pp. 329–332 [45] Neihart, N. M., Brown, J., Yu, X.: 'A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network', IEEE Trans. Circuits Syst. I Reg. Papers, 2012, 59, (8), pp. 1743–1751 [46] ‘LTE TDD—the global solution for unpaired spectrum’, https://www.qualcomm.com/documents/lte-tdd-global-solution-unpaired-spectrum, accessed 19 August 2013 [47] Thanachayanont, A., Payne, A.: ' VHF CMOS integrated active inductor', IET Electron. Lett., 1996, 32, (11), pp. 999–1000 [48] Gu, Q.: ' RF System Design of Transceivers for Wireless Communications' (Springer, 2005) [49] ETSI TR 136 931 v14.0.0, 'LTE; Evolved Universal Terrestrial Radio Access (EUTRA); Radio frequency (RF) requirements for LTE Pico Node B' (3GPP, 2017) [50] Jayaraman, K., Khan, Q., Chi, B., et al.: 'A self-healing 2.4GHz LNA with on-chip S11/S21 measurement/calibration for in-situ PVT compensation', Proc. IEEE Radio Freq. Integr. Circuits Symp., CA, USA, May 2010, pp. 311–314 [51] Adom-Bamfi, G., Entesari K.: 'A multiband low noise amplifier with a switchable Gm active shunt feedback for SDRs'. Proc. IEEE Radio and Wireless Symp., TX, USA, Jan. 2016, pp. 179–182 [52] Fu, C.-T., Ko, C.-L., Kuo, C.-N., et al.: 'A 2.4–5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier', IEEE Trans. Microw. Theory Techn., 2008, 56, (12), pp. 2754–2763 [53] Yu, X., Neihart, N. M.: 'Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer', IEEE Trans. Microw. Theory Techn., 2013, 61, (3), pp. 1236–1246 [54] Lim, K., Min, S., Lee, S., et al.: 'A 2x2 MIMO tri-band dual-mode direct-conversion CMOS transceiver for worldwide WiMAX/WLAN applications', IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 1648–1658 [55] Lee, J.-Y., Park, H.-K., Chang, H.-J., et al.: 'Low-Power UWB LNA with common-gate and current reuse techniques', IET Microw. Antennas Propag., 2012, 6, (7), pp. 793–799 [56] Lo, S., Sever, I., Ma, S.-P., et al.: 'A dual-antenna phased-array UWB transceiver in 0.18-m CMOS', IEEE J. Solid- State Circuits, 2006, 41, (12), pp. 2776–2786 [57] Fischer, T. W., Kelleci, B., Shi, K., et al.: 'An analog approach to suppressing in-band narrow-band interference in UWB receivers', IEEE Trans. Circuits Syst. I, Reg. Papers, 2007, 44, (5), pp. 941–950 [58] Ghosh, A., Walter, D.R., Andrews, J.G., Chen, R.: 'Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential', IEEE Communications Magazine, 2005, 43, (2), pp. 129–136 [59] Rambabu, K., Chia, M. Y.-W., Chan, K. M., Bornemann, J.: 'Design of multiple-stopband filters for interference suppression in UWB applications', IEEE Trans. Microw. Theory Tech, 2006, 54, (8), pp. 3333–3338 [60] Luo, X., Ma, J.-G., Yeo, K. S., Li, E.-P.: 'Compact ultra-wideband (UWB) bandpass filter with ultra-narrow dual- and quad-notched bands', IEEE Trans. Microw. Theory Tech, 2011, 59, (6), pp. 1509–1519 [61] Liang, C.-P, Rao, P.-Z., Huang, T.-J., Chung, S.-J.: 'Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection', IEEE Trans. Microw. Theory Tech, 2010, 58, (2), pp. 277–286 [62] Nguyen, T.-K., Oh, N.-J., Cha, C.-Y., et al.: 'Image-rejection CMOS low-noise amplifier design optimization techniques', IEEE Trans. Microw. Theory Tech, 2005, 53, (2), pp. 538–547 [63] Liang, C.-P, Rao, P.-Z., Huang, T.-J., Chung, S.-J.: 'A 2.45/5.2 GHz image rejection mixer with New dual-band active notch filter', IEEE Microw. Wireless Compon. Lett., 2009, 19, (11), pp. 716–718 [64] Hsiao, C.-C., Kuo, C.-W., Ho, C.-C., Chan, Y.-J.: 'Improved quality-factor of 0.18-m CMOS active inductor by a feedback resistance design', IEEE Microw. Wireless Compon. Lett., 2002, 12, (12), pp. 467–469 [65] Hsieh, H.-H., Liao, Y.-T., Lu, L.-H.: 'A Compact Quadrature Hybrid MMIC Using CMOS Active Inductors', IEEE Trans. Microw. Theory Tech, 2017, 55, (6), pp. 1098–1104
|