|
1. NASA Solar System Exploration - Sun: Facts & Figures 2. P. Würfel, The Chemical Potential of Radiation J. Phys. C - Solid State Physics 1982, 15, 3967. 3. Newport corporation- Introduction to Solar radiation 4. World Energy Statistics | Enerdata (https://yearbook.enerdata.net/); http://peakoilbarrel.com/ 5. Estimated life time of each type fossil energy source(http://prosandconsbiomassenergy.org/category/biomass-energy/) 6. Grean peace international (http://www.greenpeace.org/international/Global/international/publications/climate/2011/Final%20SolarGeneration%20VI%20full%20report%20lr.pdf) 7. Working of Solar cell, http://home.howstuffworks.com/solar-light2.htm 8. Global trends in renewable energy investment 2017, http://fs-unep-centre.org/sites/default/files/publications/globaltrendsinrenewableenergyinvestment2017.pdf 9. P. J. Call, Overview of Solar Energy Conversion Technologies: Quantum Processes and Thermal Processes, Materials Science and Engineering, 53 (1982) 7 – 16. 10. NREL Website: http://www.nrel.gov. 11. J. Nelson, C. J. M. Emmott, “Can solar power deliver?,” Phil. Trans. R. Soc. A, vol.371, p. 20120372, 2013. 12. J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, and V. Bulovic, “Pathways for Solar Photovoltaics,” Energy Environ. Sci., 2015. 13. “International Technology Roadmap for Photovoltaic (ITPV),” 2013. 14. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. Solar cell efficiency tables (version 46): Solar cell efficiency tables (version 46). 23(7):805–812. ISSN 10627995.Cited on pages 16 and 17.) 15. H.F. Sterling R.C. Chittick, J.H. Alexander. J. Electrochem. Soc., 116:77, 1969. 16. Solarte, Belectric, www.solarte.de, . URL www.solarte.de. (Cited on page 16.) 17. Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 6.5% efficient perovskite quantumdot- sensitized solar cell. 3(10):4088, . ISSN 2040-3364, 2040- 3372. URL http://xlink.rsc.org/?DOI=c1nr10867k. (Cited on page 16.) 18. Mark Gruber, Julia Wagner, Konrad Klein, Ulrich Hörmann, Andreas Opitz, Martin Stutzmann, and Wolfgang Brütting. Thermodynamic Efficiency Limit of Molecular Donor-Acceptor Solar Cells and its Application to Diindenoperylene/C60-Based Planar Heterojunction Devices. 2(9):1100–1108. ISSN 16146832. URL http://doi.wiley.com/10.1002/aenm.201200077. (Cited on page 17.) 19. M.D. Graef, M. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, 2007. 20. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Perovskite as light harvester: a game changer in photovoltaics., Angew. Chem. Int. Ed. Engl. 53 (2014) 2812– 2824. 21. Xiaoxi He. Perovskite photovoltaics: Current status and outlook. 2(3):030301. ISSN 2053-1613. 22. Perovskites and Perovskite Solar Cells: An Introduction Ossia enabling innovative electronics. 23. B. O’regan, M. Gratzel, Nature, 1991, 353, 737. 24. Akihiro Kojimaa, Kenjiro Teshima, Tsutomu Miyasaka, and Yasuo Shiraia, Novel Photoelectro chemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2). In Proc. 210th ECS Meeting. 25. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, Organo-metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 2009, 131 (17), pp 6050–6051. 26. Jeong-Hyeok Im , Chang-Ryul Lee , Jin-Wook Lee , Sang-Won Park and Nam-Gyu Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3, 4088-4093. 27. Hui-Seon Kim. et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci Rep. 2012; 2: 591. 28. Akihiro Kojima, Kenjiro Teshima, Tsutomu Miyasaka, and Yasuo Shiraia, Novel Photo-electrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (11). In Proc. 214th ECS Meeting. 29. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, andH. J. Snaith. Efficient Hybrid Solar Cells Based on Meso-Super structured Organometal Halide Perovskites. Science 02 Nov 2012: Vol. 338, Issue 6107, pp. 643-647. 30. Jin Hyuck Heo. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80. 31. Liu, Mingzhen; Johnston, Michael B; Snaith, Henry J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature; London501.7467 (Sep 19, 2013): 395-8. 32. Yang Yang. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014). 33. Hyun Suk Jung and Nam-Gyu Park. Perovskite Solar Cells: From Materials to Devices. 11(1):10–25. ISSN 16136810. 34. Henry J. Snaith, Antonio Abate, James M. Ball, Giles E. Eperon, Tomas Leijtens, Nakita K. Noel, Samuel D. Stranks, Jacob Tse-Wei Wang, Konrad Wojciechowski, and Wei Zhang. Anomalous Hysteresis in Perovskite Solar Cells. 5(9):1511–1515. ISSN 1948-7185. 35. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R.Bowring, T. Heumüller, M. G. Christoforo, and M. D. McGehee. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. 7(11):3690–3698.ISSN 1754-5692, 1754-5706. 36. Ronen Gottesman, Eynav Haltzi, Laxman Gouda, Shay Tirosh,Yaniv Bouhadana, Arie Zaban, Edoardo Mosconi, and FilippoDe Angelis. Extremely Slow Photoconductivity Response of CH3 NH 3 PbI 3 Perovskites Suggesting Structural Changes underWorking Conditions. 5(15):2662–2669. ISSN 1948-7185. 37. Ye Zhang, Mingzhen Liu, Giles E. Eperon, Tomas C. Leijtens,David McMeekin, Michael Saliba, Wei Zhang, Michele de Bastiani, Annamaria Petrozza, Laura M. Herz, Michael B. Johnston, Hong Lin, and Henry J. Snaith. Charge selective contacts, mobileions and anomalous hysteresis in organic–inorganic perovskite solar cells. 2(3):315–322. ISSN 2051-6347, 2051-6355. 38. Bo Wu, Kunwu Fu, Natalia Yantara, Guichuan Xing, Shuangyong Sun, Tze Chien Sum, and Nripan Mathews. Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis. pages n/a–n/a. ISSN 16146832. 39. Emilio J. Juarez-Perez, Rafael S. Sanchez, Laura Badia, Germá Garcia-Belmonte, Yong Soo Kang, Ivan Mora-Sero, and Juan Bisquert. Photo induced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. 5(13):2390–2394. ISSN 1948-7185. 40. Nam-Gyu Park. Perovskite solar cells: Switchable photovoltaics. 41. Zhengguo Xiao, Yongbo Yuan, Yuchuan Shao, Qi Wang, Qingfeng Dong, Cheng Bi, Pankaj Sharma, Alexei Gruverman, and Jinsong Huang. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. 14(2):193–198. ISSN1476-1122, 1476-4660. 42. Ajay Kumar Jena, Hsin-Wei Chen, Atsushi Kogo, Yoshitaka Sanehira,Masashi Ikegami, and Tsutomu Miyasaka. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. 7(18):9817–9823. ISSN 1944-8244, 1944-8252. 43. Bo Chen, Xiaojia Zheng, Mengjin Yang, Yuan Zhou, Souvik Kundu, Jian Shi, Kai Zhu, and Shashank Priya. Interface band structure engineering by ferroelectric polarization in perovskite solar cells. 13:582–591, ISSN22112855. 44. Chong Liu, Jiandong Fan, Xing Zhang, Yanjiao Shen, Lin Yang,and Yaohua Mai. Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. 7(17):9066–9071, ISSN 1944-8244, 1944-8252. 45. Hui-Seon Kim, Sung Kyun Kim, Byeong Jo Kim, Kyung-SikShin, Manoj Kumar Gupta, Hyun Suk Jung, Sang-Woo Kim, and Nam-Gyu Park. Ferroelectric Polarization in CH3NH3PbI3 Perovskite. 6(9):1729–1735, ISSN 1948-7185 46. Jarvist M. Frost, Keith T. Butler, and Aron Walsh. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. 2(8):081506, ISSN 2166-532X. 47. Jing Wei, Yicheng Zhao, Heng Li, Guobao Li, Jinlong Pan, Dongsheng Xu, Qing Zhao, and Dapeng Yu. Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.5 (21):3937–3945. 48. Hsin-Wei Chen, Nobuya Sakai, Masashi Ikegami, and Tsutomu Miyasaka. Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. 6(1):164–169, ISSN 1948-7185. 49. Fan Zheng, Hiroyuki Takenaka, Fenggong Wang, Nathan Z.Koocher, and Andrew M. Rappe. First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3 NH 3 PbI 3– x Cl x. 6(1):31–37. ISSN 1948-7185. 50. Kun Zhang, Jaka Sunarso, Zongping Shao, Wei Zhou, Chenghua Sun, Shaobin Wang and Shaomin Liu. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production, RSC Advances, 2011, 1, 1661–1676. 51. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, Mohammad Khaja Nazeeruddin, and M. Grätzel. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. 8(3):995–1004. ISSN 1754-5692, 1754-5706. 52. Christopher Eames, Jarvist M. Frost, Piers R. F. Barnes, Brian C.O’Regan, Aron Walsh, and M. Saiful Islam. Ionic transport in hybrid lead iodide perovskite solar cells. 6:7497. ISSN2041-1723. 53. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, and Yoshitaka Tateyama. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. 137(32):10048–10051. ISSN 0002-7863, 1520-5126. 54. Wan-Jian Yin, Tingting Shi, and Yanfa Yan. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar-Cell Performance. 26(27):4653–4658, ISSN 09359648. 55. Eric T. Hoke, Daniel J. Slotcavage, Emma R. Dohner, Andrea R.Bowring, Hemamala I. Karunadasa, and Michael D. McGehee. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. 6(1):613–617. ISSN 2041-6520, 2041-6539. 56. Christian Wehrenfennig, Giles E. Eperon, Michael B. Johnston, Henry J. Snaith, and Laura M. Herz. High Charge Carrier Mobilities and Lifetimes in Organo-lead Trihalide Perovskites. 26 (10):1584–1589. ISSN 09359648. 57. Felix Deschler, Michael Price, Sandeep Pathak, Lina E. Klintberg, David-Dominik Jarausch, Ruben Higler, Sven Hüttner, TomasLeijtens, Samuel D. Stranks, Henry J. Snaith, Mete Atatüre,Richard T. Phillips, and Richard H. Friend. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. 5(8):1421–1426. ISSN 1948-7185. 58. Vesselinka Petrova-Koch, Rudolf Hezel, Adolf Goetzberger (2009). High-Efficient Low-Cost Photovoltaics: Recent Developments. Springer. pp. 1–. ISBN 978-3-540-79358-8. 59. "Light sensitive device" U.S. Patent 2,402,662 Issue date: June 1946. 60. Charge Carrier Dynamics of Methylammonium Lead- Iodide Perovskite Solar Cells, From Microseconds to Minutes, Msc thesis Martin Neukom, Jan 2016. arXiv:1611.06425. 61. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395–398. 62. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 2013, 136, 622–625. 63. J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510. 64. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, Chem. Mater., 2014, 26, 1485–1491. 65. National Instruments Corporation. Part II- Photovoltaic cell I-V characterisation Theory and Labview analysis code. 66. Warren, Bertram Eugene. X-ray diffraction. Courier Corporation, 1969. 67. Williams, David B and Barry Carter. The transmission electron microscope. Springer Us, 1996. 68. Guogang Xue, Xirui Yu, Tao Yu, Chunxiong Bao, Jiyuan Zhang, Jie Guan, Huan Huang, Zekun Tang and Zhigang Zou. Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum, Journal of Physics D: Applied Physics, Volume 45, Number 42. 69. Y.Zhao, K.Zhu, J.Phys.Chem.Lett.4(2013)2880–2884. 70. C.C.Stoumpos, C.D.Malliakas, M.G.Kanatzidis, Inorg.Chem. 52 (2013)9019–9038. 71. M. Nikl, K. Nitsch, J. Chval, F. Somma, A.R. Phani, S. Santucci, C. Giampaolo, P. Fabeni, G.P. Pazzi, X.Q. Feng, J. Phys.: Condens. Matter 12 (2000) 1939. 72. Lu-Lin Li , Yu-Cheng Chang , Hui-Ping Wu & Eric Wei-Guang Diau (2012). Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells, International Reviews in Physical Chemistry, 31:3, 420-467. 73. C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello, and J. R. Durrant. Experimental determination of the rate law for charge carrier decay in a polythiophene:fullerene solar cell. Applied Physics Letters, 92(9):093311, 2008.
|