跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卡提諾
研究生(外文):Karthik Rajagopal
論文名稱:複數陽離子對鈣鈦礦太陽能電池的效應
論文名稱(外文):Effects of multi-cations on the performance of organometal perovskite solar cells
指導教授:陳方中陳方中引用關係
指導教授(外文):Chen, Fang-Chung
口試委員:李柏璁盧廷昌林詩淳陳方中
口試委員(外文):Lee, Po-TsungLu, Tien-ChangLin, Shih-ChunChen, Fang-Chung
口試日期:10-03-2017
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:載體壽命鈣鈦礦太陽能電池瞬態光電流瞬態光電壓陽離子
外文關鍵詞:carrier lifetimeperovskite solar cellstransient photocurrenttransient photovoltagecationcesium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們研究了在金屬鈣鈦礦太陽能電池中添加多陽離子的效果. 通過使用X射線衍射(XRD)和掃描電子顯微镜(SEM)分别觀察鈣鈦礦材料中銫離子的不同命題,觀察結構和形態變化. 已經採用瞬態光電壓和光電流測量來獲得載流子壽命和電荷濃度. 用0.15原子比的銫制备的器件在其他器件中表現出最好的性能. 電力轉換效率從10.5%提高到了13.2%.
In this work, we studied the effects of adding mutiple cations in oragnaometal perovskite solar cells. Structural and morphological changes were observed through using X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively, for different proposition of cesium ions in the perovskite material. Transient photovoltage and photocurrent measurements have been employed to obtain carrier lifetimes and charge concentrations. The device prepared with 0.15 atomic ratio of cesium showed the best performance among the devices others. Power conversion efficiency has been increased from 10.5% to 13.2%.
中文摘要................................................I
Abstract…………………………......…….…....………………………………………….......II
Acknowledgement………………......…….…………………………………………….......III
Contents………………………………….……………….…………………………........……......IV
List of figures.………………………………………...……………...………..……………...VI
CHAPTER-I INTRODUCTION………………….……………………….………….........……1
1.1. Solar spectrum………………………………….......................1
1.2. Addressing the Energy Crisis……………………….………………………...4
1.3. Motivation…………………………………………………………………………….........….7
Chapter-II…………..……………………………………….……………………………............8
2.1. Photovoltages technologies. ……………………………….………………………8
2.2. Silicon solar cell…….……………………………………………….…………………...9
2.3. CdTe and CIGS………………………………...……………………………….....………..10
2.4. Amorphous silicon.…………………………………….…………………...……………..10
2.5. Dye sensitized solar cell & organic solar cell.…..11
2.6. Perovskite Solar Cell (PSC)………………………………………………………..12
2.6.1. Introduction.…………..………………………………....………………....….…12
2.6.2. Timeline of perovskite solar cell………....…………..….12
2.6.3. Rise of perovskite solar cells…………………………......……16
2.6.4. Device architecture… …………………………………………..……….…....17
2.6.5. Physical properties.….…………….…………………………………...……….18
2.6.6. Different fabrication methods.………………….………….……………19
2.6.7. General operation of solar cell…………………………….……...20
2.7. Characteristic of solar cell…………………………………….…….…...21
2.8. Material preparation…..……………………………………..….…………………….27
2.9. Instruments……………………….………………………………..………......…………….28
2.10. Fabrication of perovskite solar cell……….………..……..34
CHAPTER-III…………………………………………………………………..............……………36
3.1. Result and discussion………………………………………...………………………….36
3.2. X-ray diffraction…….……………………………….....…………………………………36
3.3 Field Emission Scanning Electron Microscopy………………..37
3.4. Device characterisation…………………………………….……….……………………39
3.5.Transient photovoltage measurement……………………………………………42
3.6. Transient photocurrent measurement…...……………………….……44
Conclusion…….……………...........………………………………………………………………..50
Reference..............................................51
1. NASA Solar System Exploration - Sun: Facts & Figures
2. P. Würfel, The Chemical Potential of Radiation J. Phys. C - Solid State Physics 1982, 15, 3967.
3. Newport corporation- Introduction to Solar radiation
4. World Energy Statistics | Enerdata (https://yearbook.enerdata.net/); http://peakoilbarrel.com/
5. Estimated life time of each type fossil energy source(http://prosandconsbiomassenergy.org/category/biomass-energy/)
6. Grean peace international (http://www.greenpeace.org/international/Global/international/publications/climate/2011/Final%20SolarGeneration%20VI%20full%20report%20lr.pdf)
7. Working of Solar cell, http://home.howstuffworks.com/solar-light2.htm
8. Global trends in renewable energy investment 2017, http://fs-unep-centre.org/sites/default/files/publications/globaltrendsinrenewableenergyinvestment2017.pdf
9. P. J. Call, Overview of Solar Energy Conversion Technologies: Quantum Processes and Thermal Processes, Materials Science and Engineering, 53 (1982) 7 – 16.
10. NREL Website: http://www.nrel.gov.
11. J. Nelson, C. J. M. Emmott, “Can solar power deliver?,” Phil. Trans. R. Soc. A, vol.371, p. 20120372, 2013.
12. J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, and V. Bulovic, “Pathways for Solar Photovoltaics,” Energy Environ. Sci., 2015.
13. “International Technology Roadmap for Photovoltaic (ITPV),” 2013.
14. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. Solar cell efficiency tables (version 46): Solar cell efficiency tables (version 46). 23(7):805–812. ISSN 10627995.Cited on pages 16 and 17.)
15. H.F. Sterling R.C. Chittick, J.H. Alexander. J. Electrochem. Soc., 116:77, 1969.
16. Solarte, Belectric, www.solarte.de, . URL www.solarte.de. (Cited on page 16.)
17. Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 6.5% efficient perovskite quantumdot- sensitized solar cell. 3(10):4088, . ISSN 2040-3364, 2040- 3372. URL http://xlink.rsc.org/?DOI=c1nr10867k. (Cited on page 16.)
18. Mark Gruber, Julia Wagner, Konrad Klein, Ulrich Hörmann, Andreas Opitz, Martin Stutzmann, and Wolfgang Brütting. Thermodynamic Efficiency Limit of Molecular Donor-Acceptor Solar Cells and its Application to Diindenoperylene/C60-Based Planar Heterojunction Devices. 2(9):1100–1108. ISSN 16146832. URL http://doi.wiley.com/10.1002/aenm.201200077. (Cited on page 17.)
19. M.D. Graef, M. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, 2007.
20. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Perovskite as light harvester: a game changer in photovoltaics., Angew. Chem. Int. Ed. Engl. 53 (2014) 2812– 2824.
21. Xiaoxi He. Perovskite photovoltaics: Current status and outlook. 2(3):030301. ISSN 2053-1613.
22. Perovskites and Perovskite Solar Cells: An Introduction Ossia enabling innovative electronics.
23. B. O’regan, M. Gratzel, Nature, 1991, 353, 737.
24. Akihiro Kojimaa, Kenjiro Teshima, Tsutomu Miyasaka, and Yasuo Shiraia, Novel Photoelectro chemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2). In Proc. 210th ECS Meeting.
25. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, Organo-metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 2009, 131 (17), pp 6050–6051.
26. Jeong-Hyeok Im , Chang-Ryul Lee , Jin-Wook Lee , Sang-Won Park and Nam-Gyu Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3, 4088-4093.
27. Hui-Seon Kim. et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci Rep. 2012; 2: 591.
28. Akihiro Kojima, Kenjiro Teshima, Tsutomu Miyasaka, and Yasuo Shiraia, Novel Photo-electrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (11). In Proc. 214th ECS Meeting.
29. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, andH. J. Snaith. Efficient Hybrid Solar Cells Based on Meso-Super structured Organometal Halide Perovskites. Science 02 Nov 2012: Vol. 338, Issue 6107, pp. 643-647.
30. Jin Hyuck Heo. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
31. Liu, Mingzhen; Johnston, Michael B; Snaith, Henry J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature; London501.7467 (Sep 19, 2013): 395-8.
32. Yang Yang. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).
33. Hyun Suk Jung and Nam-Gyu Park. Perovskite Solar Cells: From Materials to Devices. 11(1):10–25. ISSN 16136810.
34. Henry J. Snaith, Antonio Abate, James M. Ball, Giles E. Eperon, Tomas Leijtens, Nakita K. Noel, Samuel D. Stranks, Jacob Tse-Wei Wang, Konrad Wojciechowski, and Wei Zhang. Anomalous Hysteresis in Perovskite Solar Cells. 5(9):1511–1515. ISSN 1948-7185.
35. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R.Bowring, T. Heumüller, M. G. Christoforo, and M. D. McGehee. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. 7(11):3690–3698.ISSN 1754-5692, 1754-5706.
36. Ronen Gottesman, Eynav Haltzi, Laxman Gouda, Shay Tirosh,Yaniv Bouhadana, Arie Zaban, Edoardo Mosconi, and FilippoDe Angelis. Extremely Slow Photoconductivity Response of CH3 NH 3 PbI 3 Perovskites Suggesting Structural Changes underWorking Conditions. 5(15):2662–2669. ISSN 1948-7185.
37. Ye Zhang, Mingzhen Liu, Giles E. Eperon, Tomas C. Leijtens,David McMeekin, Michael Saliba, Wei Zhang, Michele de Bastiani, Annamaria Petrozza, Laura M. Herz, Michael B. Johnston, Hong Lin, and Henry J. Snaith. Charge selective contacts, mobileions and anomalous hysteresis in organic–inorganic perovskite solar cells. 2(3):315–322. ISSN 2051-6347, 2051-6355.
38. Bo Wu, Kunwu Fu, Natalia Yantara, Guichuan Xing, Shuangyong Sun, Tze Chien Sum, and Nripan Mathews. Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis. pages n/a–n/a. ISSN 16146832.
39. Emilio J. Juarez-Perez, Rafael S. Sanchez, Laura Badia, Germá Garcia-Belmonte, Yong Soo Kang, Ivan Mora-Sero, and Juan Bisquert. Photo induced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. 5(13):2390–2394. ISSN 1948-7185.
40. Nam-Gyu Park. Perovskite solar cells: Switchable photovoltaics.
41. Zhengguo Xiao, Yongbo Yuan, Yuchuan Shao, Qi Wang, Qingfeng Dong, Cheng Bi, Pankaj Sharma, Alexei Gruverman, and Jinsong Huang. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. 14(2):193–198. ISSN1476-1122, 1476-4660.
42. Ajay Kumar Jena, Hsin-Wei Chen, Atsushi Kogo, Yoshitaka Sanehira,Masashi Ikegami, and Tsutomu Miyasaka. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. 7(18):9817–9823. ISSN 1944-8244, 1944-8252.
43. Bo Chen, Xiaojia Zheng, Mengjin Yang, Yuan Zhou, Souvik Kundu, Jian Shi, Kai Zhu, and Shashank Priya. Interface band structure engineering by ferroelectric polarization in perovskite solar cells. 13:582–591, ISSN22112855.
44. Chong Liu, Jiandong Fan, Xing Zhang, Yanjiao Shen, Lin Yang,and Yaohua Mai. Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. 7(17):9066–9071, ISSN 1944-8244, 1944-8252.
45. Hui-Seon Kim, Sung Kyun Kim, Byeong Jo Kim, Kyung-SikShin, Manoj Kumar Gupta, Hyun Suk Jung, Sang-Woo Kim, and Nam-Gyu Park. Ferroelectric Polarization in CH3NH3PbI3 Perovskite. 6(9):1729–1735, ISSN 1948-7185
46. Jarvist M. Frost, Keith T. Butler, and Aron Walsh. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. 2(8):081506, ISSN 2166-532X.
47. Jing Wei, Yicheng Zhao, Heng Li, Guobao Li, Jinlong Pan, Dongsheng Xu, Qing Zhao, and Dapeng Yu. Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.5 (21):3937–3945.
48. Hsin-Wei Chen, Nobuya Sakai, Masashi Ikegami, and Tsutomu Miyasaka. Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. 6(1):164–169, ISSN 1948-7185.
49. Fan Zheng, Hiroyuki Takenaka, Fenggong Wang, Nathan Z.Koocher, and Andrew M. Rappe. First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3 NH 3 PbI 3– x Cl x. 6(1):31–37. ISSN 1948-7185.
50. Kun Zhang, Jaka Sunarso, Zongping Shao, Wei Zhou, Chenghua Sun, Shaobin Wang and Shaomin Liu. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production, RSC Advances, 2011, 1, 1661–1676.
51. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, Mohammad Khaja Nazeeruddin, and M. Grätzel. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. 8(3):995–1004. ISSN 1754-5692, 1754-5706.
52. Christopher Eames, Jarvist M. Frost, Piers R. F. Barnes, Brian C.O’Regan, Aron Walsh, and M. Saiful Islam. Ionic transport in hybrid lead iodide perovskite solar cells. 6:7497. ISSN2041-1723.
53. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, and Yoshitaka Tateyama. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. 137(32):10048–10051. ISSN 0002-7863, 1520-5126.
54. Wan-Jian Yin, Tingting Shi, and Yanfa Yan. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar-Cell Performance. 26(27):4653–4658, ISSN 09359648.
55. Eric T. Hoke, Daniel J. Slotcavage, Emma R. Dohner, Andrea R.Bowring, Hemamala I. Karunadasa, and Michael D. McGehee. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. 6(1):613–617. ISSN 2041-6520, 2041-6539.
56. Christian Wehrenfennig, Giles E. Eperon, Michael B. Johnston, Henry J. Snaith, and Laura M. Herz. High Charge Carrier Mobilities and Lifetimes in Organo-lead Trihalide Perovskites. 26 (10):1584–1589. ISSN 09359648.
57. Felix Deschler, Michael Price, Sandeep Pathak, Lina E. Klintberg, David-Dominik Jarausch, Ruben Higler, Sven Hüttner, TomasLeijtens, Samuel D. Stranks, Henry J. Snaith, Mete Atatüre,Richard T. Phillips, and Richard H. Friend. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. 5(8):1421–1426. ISSN 1948-7185.
58. Vesselinka Petrova-Koch, Rudolf Hezel, Adolf Goetzberger (2009). High-Efficient Low-Cost Photovoltaics: Recent Developments. Springer. pp. 1–. ISBN 978-3-540-79358-8.
59. "Light sensitive device" U.S. Patent 2,402,662 Issue date: June 1946.
60. Charge Carrier Dynamics of Methylammonium Lead- Iodide Perovskite Solar Cells, From Microseconds to Minutes, Msc thesis Martin Neukom, Jan 2016. arXiv:1611.06425.
61. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395–398.
62. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 2013, 136, 622–625.
63. J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510.
64. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, Chem. Mater., 2014, 26, 1485–1491.
65. National Instruments Corporation. Part II- Photovoltaic cell I-V characterisation Theory and Labview analysis code.
66. Warren, Bertram Eugene. X-ray diffraction. Courier Corporation, 1969.
67. Williams, David B and Barry Carter. The transmission electron microscope. Springer Us, 1996.
68. Guogang Xue, Xirui Yu, Tao Yu, Chunxiong Bao, Jiyuan Zhang, Jie Guan, Huan Huang, Zekun Tang and Zhigang Zou. Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum, Journal of Physics D: Applied Physics, Volume 45, Number 42.
69. Y.Zhao, K.Zhu, J.Phys.Chem.Lett.4(2013)2880–2884.
70. C.C.Stoumpos, C.D.Malliakas, M.G.Kanatzidis, Inorg.Chem. 52 (2013)9019–9038.
71. M. Nikl, K. Nitsch, J. Chval, F. Somma, A.R. Phani, S. Santucci, C. Giampaolo, P. Fabeni, G.P. Pazzi, X.Q. Feng, J. Phys.: Condens. Matter 12 (2000) 1939.
72. Lu-Lin Li , Yu-Cheng Chang , Hui-Ping Wu & Eric Wei-Guang Diau (2012). Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells, International Reviews in Physical Chemistry, 31:3, 420-467.
73. C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello, and J. R. Durrant. Experimental determination of the rate law for charge carrier decay in a polythiophene:fullerene solar cell. Applied Physics Letters, 92(9):093311, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top