(3.239.33.139) 您好!臺灣時間:2021/03/08 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊凡頡
研究生(外文):Chuang, Fan-Hsieh
論文名稱:以RFID 技術為基礎之可攜式眼睛保健無線紀錄裝置
論文名稱(外文):A RFID-based Portable Wireless Recorder for Eye Healthcare Monitoring
指導教授:邱俊誠邱俊誠引用關係
指導教授(外文):Chiou, Jin-Chern
口試委員:唐震寰黃育綸邱俊誠歐陽盟
口試委員(外文):Tarng, Jenn-HawnHuang, Yu-LunChiou, Jin-ChernOu, Yang- Mang
口試日期:2016-12-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:眼壓讀取器電容量測射頻識別
外文關鍵詞:Intraocular pressureReceiverC2DRFID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
本論文介紹可靠、容易攜帶、且具備自動化調整的眼壓UHF RFID訊號接受器與應用程式 (IOP RFID Receiver and Application) 的研究與開發過程, 為了讀取眼壓訊號,我們使用以隱形眼鏡為基礎的裝置 (IOP Tag),當病患戴著此隱形眼鏡裝置的時,可以藉由UHF RFID進行量測讀值,並回傳眼壓數值返回接受器。在本論文前,該裝置的接受器為CISC RFID Xplorer,因CISC RFID Xplorer接收體積龐大以及需要手動調整多項量測參數(例如:Baseline, Sensitivity 等),量測往往費時且非常不易攜帶。本論文為了解決此問題,開發了專屬IOP量測監控的手持式裝置(IOP RFID Receiver and Application)。開發主要為:RFID Receiver 韌體端與 IOP Android Application 手機軟體開發,RFID Receiver 藉由修改原先 AMS AS3993 提供的官方韌體 (FW Source 1.3.8),定義並實現新的Protocol ID,使其支援IOP Tag 客製化的Commands;IOP Android Application 則為一支援 USB HID Protocol 的手機端應用程式,運行在支援 USB OTG 的 Android Smartphon裝置上,開發過程採用 Android Studio撰寫與RFID Receiver 溝通的HID Command,使得IOP Tag 讀值可以直接在手機上進行,由手機本身提供足夠的電力,不需要任何的外部供電,同時,為了讓使用更方便,原先在Xplorer 上面的量測必須要手動調整Baseline 和 Sensitivity 使得 IOP Tag 中的 C2D 落在可讀取範圍內(介於0 到飽和值),透過本論文設計的IOP Applcation,程式會執行自動Segment Adjustment 演算法,選取最適當的Baseline 與 Sensitivity,全部調整的過程自動化,節省量測者的時間,同時增加使用的方便性,最後,由於IOP Receiver 的供電來源為手機本身,節省電源是一個重要的工作,本IOP Application 亦自動偵測並且調整最小Power Gain,用最小的Power 使得IOP Tag 運作且回傳資料。
The thesis introduces our work on designing and implementation of a new UHF RFID Receiver for IOP Tag. The new receiver is portable, reliable and with auto adjustment feature. In order to read the intraocular pressure, or IOP from the eyes. We use a contact-lens-based device with sensor and chip built-in. As user wears the device, the receiver is able to read the intraocular pressure value and transfer the readout value back via UHF RFID transmission. Before the thesis, the measurement was conducted with CISC RFID Xplorer machine. The CISC Xplorer is a huge and not portable. Moreover, several initial adjustments (like baseline and sensitivity) are required every time before conducting a measurement. The thesis is about solving this problem by designing and implementing a new IOP RFID Receiver and Application. Mainly two parts, firmware on receiver and software application running on Android smartphone. Based on AMS AS3993 official firmware (FW Source 1.3.8), we define and implement a new protocol ID to supports IOP-customized commands. For the application software, we write a new Android application with USB OTG support. And execute an application on an Android smartphone. The communication between receiver and smartphone is based on USB HID protocol. By taking advantage of the protocol, the new IOP receiver is totally powered by smartphone USB socket. That requires no external power. Then, to make the receiver more friendly and easy to use, we also program auto segment adjustment algorithm. Previously, manual adjustment for baseline and sensitivity is time consuming. With the auto segment adjustment algorithm developed, a best fit baseline and sensitivity can be selected automatically without human involved. This not only saves user’s time, but also enhance its convenience. Last but not the least, since power for IOP receiver was taken from smartphone directly. Power saving is an important issue in order to provide longer durability. The new application also detects and adjusts a minimum power gain to boot IOP Tag. Thus, the receiver is able to work under highest energy efficiency.
中文摘要 …………………………………………………………………… i
Abstract ………………………………….…………………………………..… iv
Acknowledgements ……………………….…………………………………... v
Contents ………………………….………………………………………..….. vi
List of Figures …………………………………..……………………………. viii
List of Tables ………………………………….…………...…………………….x
Chapter 1 Introduction .……..………………….……………………………. 1
1.1 Motivation .….……………….……………………………….. 1
1.2 Background ……..….………..……………………………….. 3
1.3 Terminologies …....….……….………………………………. 5
Chapter 2 Previous Work .……….…………….……………………….…….. 6
2.1 System Overview ………………..………………………….... 7
2.2 Command Cycle …...….………………..…..……………… 9
2.3 Problems ……...…...….…………………..…..…………… 11
Chapter 3 Proposed System ………….....………………..………………… 13
3.1 System Overview ………………...………..…….………….. 14
3.2 Host Device ……………....….…….....…………..…………. 15
3.3 Receiver Device ………....….…….....…………..…………. 17
3.4 Android Application .….……..……..……………………... 20
3.5 Firmware .….….………..…………..……………………... 32
Chapter 4 Experiments and Validation ....…...………....………………….. 35
4.1 Vertical Distance minimum required TX Power gain …… 36
4.2 Clock rate to minimum required TX Power gain ……...…… 38
4.3 CSUB to read-out value ………...….……………..………..…..39
4.4 CREF to read-out value …………..….………….………...… 41
4.5 Automatic Segment Adjustment ……..….…….………...… 43
4.6 Comparison …………………………………………………44
Chapter 5 Conclusion ……..….……….…………..………………………. 49
References ……………………………………………………………………..50
[1] Wayback Machine (2016) Automatic Identification and Data Collection (AIDC) 

[2] IDTechEx (2015) RFID Forecasts, Players and Opportunities

[3] Charles A. Walton (1983) Portable radio frequency emitting identifier, U.S. Patent 4,384,288, United States

[4] Wadham, Rachel (2003) Radio Frequency Identification

[5] Roberti (2004) EPCglobal Ratifies Gen 2 Standard

[6] RFIDJournal (2013) RFID Frequently Asked Questions Retrieved from RFIDJournal.com

[7]  H. A. Quigley, A. T. Broman (2006) The number of people with glaucoma worldwide in 2010 and 2020, The British Journal of Ophthalmology, vol. 90, no. 3, pp. 262-267

[8] C. Kniestedt, O. Punjabi, S. Lin, R. L. Stamper (2008) Tonometry through the Ages, Survey of Ophtalmology, vol. 53, no. 6, pp. 568-591

[9] D. Piso, P. Veiga-Crespo, E. Vecino (2012) Modem Monitoring Intraocular Pressure Sensing Devices Based on Application Specific Integrated Circuits", Journal of Biomaterials and Nanobiotechnology, vol. 3, no. 2A, pp. 301-309

[10] AMS (2015) SL900A Tag product information, Retrieved from http://www.ams.com/eng/Products/UHF-Rfid.

[11] CISC (2009) ISC RFID Xplorer Equipment Information, , Retrieved from https://www.cisc.at/xplorer.html.

[12] IEEE (2004) IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields 3 kHz to 300 GHz, IEEE Std C95.1–2005 (Revision of IEEE Std C95.1-1991), pp. 0_1-238

[13] Y. C. Huang, G. T. Yeh, T. S. Yang, J. C. Chiou (2013) A contact lens sensor system with a micro-capacitor for wireless intraocular pressure monitoring, SENSORS 2013 IEEE, vol. 1, no. 4, pp. 3-6

[14] M. Leonardi, S. Metz, D. Bertrand, P. Leuenberger (2006) Intraocular pressure recording system

[15] P. J. Chen, D. C. Rodger, S. Saati, M. S. Humayun, Y. C. Tai (2008) Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors, Journal of Microelectromechanical Systems, vol. 17, no. 6, pp. 1342-1351

[16] Domdouzis K., Kumar B. and Anumba C. (2007) Radio Frequency Identification (RFID) applications: A brief introduction Advanced Engineering Informatics 21 350-355

[17] Saparkhojayev Nurbek and Guvercin Selim (2012) Attendance Control System based on RFID- technology IJCSI International Journal of Computer Science

[18] Dhanalakshmi M. and Mamatha U. (2009) RFID based library management system Proceedings of ASCNT 227-234

[19] Diugwu C A, Batchelor J C, Langley R J and Fogg M (2004) Planar antenna for passive radio frequency identification [RFID] tags IEEE AFRICON 2004, 7th AFRICON Conf. Africa pp 21-4

[20] Kampers F W H, Rossing W and Eradus W J (1999) The ISO standard for radiofrequency identification of animals Comput. Electron. Agric. 24 27

[21] Tran N A, Tran H N, Dang M C and Fribourg-Blanc E (2010) Copper thin film for RFID UHF antenna on flexible substrate Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 025016

[22] Traille A, Yang L, Rida A, Lakafossis V and Tentzeris M (2009) Novel miniaturized antennas for RFID-enabled sensors IEEE Sensors 2009 Conf. pp 912-5

[23] Jin-Chern Chiou, Shun-Hsi Hsu, Yu-Chieh Huang, Guan-Ting Yeh, Wei-Ting Liou and Cheng-Kai Kuei (2017) A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry IEEE Sensors 2017

[24] Yu-Chieh Huang, Guan-Ting Ye, Tzu-Sen Yang, Jin-Chern Chiou (2013) A Contact Lens Sensor System with a Micro-Capacitor for Wireless Intraocular Pressure Monitoring

[25] Jin-Chern Chiou, Shun-Hsi Hsu, Yu-Chieh Huang, Guan-Ting Yeh, Kai-Shiun Dai and Cheng-Kai Kuei (2017) Towards a Fully Integrated, Wirelessly Powered, and Ordinarily Equipped On-lens System for Successive Dry Eye Syndrome Diagnosis
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔