(3.234.221.67) 您好!臺灣時間:2021/04/11 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐舜熙
研究生(外文):Hsu, Shun-Hsi
論文名稱:應用於眼睛照護之無線智慧隱形眼鏡系統之設計、製作與驗證
論文名稱(外文):Design, Fabrication, and Verification of Wireless Smart Contact Len System for Eye Healthcare Applications
指導教授:邱俊誠邱俊誠引用關係
指導教授(外文):Chiou, Jin-Chern
口試委員:邱俊誠歐陽盟蘇朝琴陳華明梁聖泉
口試委員(外文):Chiou, Jin-ChernOu-Yang, MangSu, Chau-chinChen,Hua-MingLiang, Sheng-Chuan
口試日期:2018-07-25
學位類別:博士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:73
中文關鍵詞:智慧隱形眼鏡眼壓乾眼症無線傳能微機電感測器阻抗轉換器
外文關鍵詞:smart contact lensintraocular pressuredry eye syndromewireless harvestingMEMS sensorimpedance-to-digital converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著行動多媒體裝置例如智慧型手機與平板的創新與迅速發展,人類的用眼習慣出現了大幅改變。因此,能夠長時間監控眼睛生理訊號的研究在過去幾年成為許多研究團隊的主要方向。青光眼以及乾眼症是兩種隨著用眼習慣改變常見的眼科疾病,本研究會以此兩種疾病的偵測與監控作為研究與開發的目標。
本研究提出一個用於長時間偵測眼睛生理訊號且可無線驅動之智慧隱形眼鏡系統。此智慧隱形眼鏡系統包含外部讀取器以及智慧隱形眼鏡。外部讀取器使用商用射頻識別(RFID)讀取器用以提供能量給智慧隱形眼鏡,並透過超高頻(UHF)射頻識別通訊協定EPCGlobal Class1 Gen2進行溝通。智慧隱形眼鏡由電容式或電阻式感測器、天線以及感測晶片所構成。隱形眼鏡中採用微機電製程(MEMS)製作的生物感測器來擷取眼睛的生理訊號,感測器隨著眼睛狀況的不同而將生理訊號轉換成阻抗變化。隱形眼鏡上的天線用來接收讀取器提供的能量並與讀取器進行無線通訊。感測晶片為一個基於射頻無線通訊並內嵌阻抗轉換器用以轉換眼睛生理訊號的積體電路晶片。眼睛生理狀況例如眼壓變化以及淚液蒸散速度透過生理感測器轉換成電容值或電阻值變化後,再經由阻抗轉換器轉換成數位訊號。此一數位訊號再依據射頻通訊協定經過編碼後透過阻抗調變回傳到外部讀取器。隱形眼鏡採用商用生物相容的水膠(HEMA)材料利用鑄模法將生物感測器、天線以及感測晶片整合於隱形眼鏡上。採用商用標準的200微米隱形眼鏡厚度以及標準的生產流程,可以降低本研究之隱形眼鏡的配戴不舒適感並提升使用者的使用意願。
本研究提出的智慧隱形眼鏡可以使用商用無線射頻讀取器在1公分的距離及26.5 dBm的發射功率下偵測2.25到30毫米汞柱的眼壓變化與隱形眼鏡的含水量變化。總結上述,本研究提出的智慧隱形眼鏡系統可以提供無線量測以及長時間監控的功能,未來藉由不同生物感測器的設計與整合可應用於其他生理訊號的偵測進而拓展應用領域。
Due to the invention and rapid development of multimedia devices such as smart mobile phone and tablet, people’s habits of using eyes have dramatically changed. Therefore, long-term monitoring of eye healthcare information attracts many research focuses in the past few years. Two major eye diseases, glaucoma and dry eye syndrome (DES), were used as illustrations for smart contact lens (SCL) developments in this research.
This research proposed a wirelessly powered smart contact lens sensor system for long-term monitoring of eye healthcare conditions. The SCL sensor system consists of SCL readout system and a smart contact lens. SCL readout system uses commercial radio frequency identification (RFID) reader to transmit energy to smart contact lens and communicates with it through ultra-high frequency (UHF) EPCGlobal C1G2 protocol. The smart contact lens consists of capacitive or resistive sensors, receiving antenna and sensor chip. The on-lens biosensors are fabricated with Microelectromechanical Systems (MEMS) technology to implement sensor devices for impedance variations following eye conditions. The receiving antenna is used for energy transmission and data communication. The sensor chip is a RFID based sensor chip with embedded impedance-to-digital converter (IDC) for sensor data conversion. The eye healthcare information such as intraocular pressure (IOP) and tear evaporation rate was detected by capacitance change of on-lens capacitive or resistive sensors. The digital value after conversion by IDC will be transmitted back to external RFID reader through load modulation. The chip, receiving antenna and biosensor were integrated on a soft contact lens with commercially available biocompatible HEMA hydrogel by using a general cast molding method. With standard 200-μm thickness and commercial manufacturing process, discomfort of proposed SCL is reduced and compliance is increased.
The proposed smart contact lens system enabled the detection of capacitive variation caused by pressure changes within the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using 26.5 dBm incident power from commercial Gen2 RFID-compatible equipment. To sum up, the proposed SCL system can achieve wireless recording and long-term monitoring. The application of this system can be future extend by design and integration of different on-lens sensors for different biomarkers in the future.
摘要 I
ABSTRACT III
Acknowledgement/致謝 V
Table of Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Previous Work 1
1.2.1 Wireless Energy Harvesting 3
1.2.2 Sensor Readout Circuitry 4
1.3 Objectives 5
1.4 Organization 6
Chapter 2 Sensor Chip Design 8
2.1 Introduction 8
2.2 Chip Architecture 8
2.3 Analog Front End Circuitry 10
2.4 Digital Circuitry 17
2.5 Whole Chip Simulation and Verification 18
2.6 Summary 19
Chapter 3 Sensor Readout Circuitry Design 20
3.1 Introduction 20
3.2 Reconfigurable Impedance to Digital Converter 22
3.3 Summary 33
Chapter 4 Wireless Energy Harvesting 34
4.1 Introduction 34
4.2 Antenna Coupling and Power Scheme Optimization 35
4.3 Transmitting Antenna Design 36
4.4 Receiving Antenna Design 39
4.5 Antenna Coupling Simulation 40
4.6 Specific Absorption Rate Simulation 42
4.7 Summary 45
Chapter 5 Sensor Fabrication and Lens Package 46
5.1 Introduction 46
5.2 Sensor Design and Fabrication 46
5.3 Contact Lens Assembly Process 49
5.4 Summary 50
Chapter 6 Measurement Results 51
6.1 Introduction 51
6.2 Sensor Chip Front End Testing 51
6.2.1 Sensor Chip Functional Testing 52
6.2.2 Sensor Chip Front End Performance Testing 54
6.3 Sensor Readout Circuitry Measurement 56
6.4 Wireless Power Transfer Measurement 59
6.5 Smart Contact Lens System Measurement 62
6.6 Summary 66
Chapter 7 Conclusions and Future Work 67
7.1 Summary and Conclusions 67
7.2 Future Work 68
Reference 69
[1] H. A. Quigley and A. T. Broman, "The number of people with glaucoma worldwide in 2010 and 2020," Br J Ophthalmol, vol. 90, pp. 262-7, Mar 2006.
[2] G. Foulks, M. Lemp, J. Jester, J. Sutphin, J. Murube, and G. Novack, "report of the international dry eye workshop (DEWS)," Ocul Surf, vol. 5, pp. 65-204, 2007.
[3] B. D. Sullivan, D. Whitmer, K. K. Nichols, A. Tomlinson, G. N. Foulks, G. Geerling, et al., "An objective approach to dry eye disease severity," Investigative ophthalmology & visual science, vol. 51, pp. 6125-6130, 2010.
[4] C. Kniestedt, O. Punjabi, S. Lin, and R. L. Stamper, "Tonometry through the ages," Surv Ophthalmol, vol. 53, pp. 568-91, Nov-Dec 2008.
[5] D. Piso, P. Veiga-Crespo, and E. Vecino, "Modern monitoring intraocular pressure sensing devices based on application specific integrated circuits," Journal of Biomaterials and Nanobiotechnology, vol. 3, p. 301, 2012.
[6] P.-J. Chen, D. C. Rodger, S. Saati, M. S. Humayun, and Y.-C. Tai, "Microfabricated implantable parylene-based wireless passive intraocular pressure sensors," Journal of Microelectromechanical Systems, vol. 17, pp. 1342-1351, 2008.
[7] E. Y. Chow, A. L. Chlebowski, and P. P. Irazoqui, "A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor," IEEE transactions on biomedical circuits and systems, vol. 4, pp. 340-349, 2010.
[8] M. Leonardi, P. Leuenberger, D. Bertrand, A. Bertsch, and P. Renaud, "First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens," Invest Ophthalmol Vis Sci, vol. 45, pp. 3113-7, Sep 2004.
[9] M. Leonardi, E. M. Pitchon, A. Bertsch, P. Renaud, and A. Mermoud, "Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes," Acta Ophthalmol, vol. 87, pp. 433-7, Jun 2009.
[10] A. Donida, G. Di Dato, P. Cunzolo, M. Sala, F. Piffaretti, P. Orsatti, et al., "A 0.036 mbar circadian and cardiac intraocular pressure sensor for smart implantable lens," in Solid-State Circuits Conference-(ISSCC), 2015 IEEE International, 2015, pp. 1-3.
[11] G.-Z. Yang and G. Yang, Body sensor networks vol. 1: Springer, 2006.
[12] Y. Hao and R. Foster, "Wireless body sensor networks for health-monitoring applications," Physiological measurement, vol. 29, p. R27, 2008.
[13] H. J. Lee, S. H. Lee, K.-S. Ha, H. C. Jang, W.-Y. Chung, J. Y. Kim, et al., "Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients," International journal of medical informatics, vol. 78, pp. 193-198, 2009.
[14] S. Krishna, S. A. Boren, and E. A. Balas, "Healthcare via cell phones: a systematic review," Telemedicine and e-Health, vol. 15, pp. 231-240, 2009.
[15] D. Vassis, P. Belsis, C. Skourlas, and G. Pantziou, "Providing advanced remote medical treatment services through pervasive environments," Personal and Ubiquitous Computing, vol. 14, pp. 563-573, 2010.
[16] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and D. Wetherall, "Revisiting smart dust with RFID sensor networks," in Proceedings of the 7th ACM Workshop on Hot Topics in Networks (HotNets-VII), 2008.
[17] EPCglobal, "EPC TM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860-960MHz Version 1.0.9," 2004.
[18] K. Gosalia, G. Lazzi, and M. Humayun, "Investigation of a microwave data telemetry link for a retinal prosthesis," IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 1925-1933, 2004.
[19] K. Gosalia, M. S. Humayun, and G. Lazzi, "Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 2365-2373, 2005.
[20] A. Faul and J. Naber, "Design and test of a 915MHz, RFID-based pressure sensor for Glaucoma," in Circuits and Systems (LASCAS), 2014 IEEE 5th Latin American Symposium on, 2014, pp. 1-4.
[21] Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, "A 3uW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring," IEEE Journal of Solid-State Circuits, vol. 47, pp. 335-344, 2012.
[22] H.-W. Cheng, T.-C. Yu, H.-Y. Huang, S.-H. Ting, T.-H. Huang, J.-C. Chiou, et al., "Design of miniaturized antenna and power harvester circuit on the enucleated porcine eyes," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1156-1159, 2014.
[23] I. S. C. Committee, "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz," IEEE C95. 1-2005, 2005.
[24] J. O'Dowd, A. Callanan, G. Banarie, and E. Company-Bosch, "Capacitive sensor interfacing using sigma-delta techniques," in Sensors, 2005 IEEE, 2005, p. 4 pp.
[25] J.-C. Chiou, S.-H. Hsu, Y.-C. Huang, G.-T. Yeh, W.-T. Liou, and C.-K. Kuei, "A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry," Sensors, vol. 17, p. 108, 2017.
[26] J.-C. Chiou, S.-H. Hsu, Y.-C. Huang, G.-T. Yeh, K.-S. Dai, and C.-K. Kuei, "Towards a fully integrated, wirelessly powered, and ordinarily equipped on-lens system for successive dry eye syndrome diagnosis," in VLSI Technology, 2017 Symposium on, 2017, pp. T100-T101.
[27] Z. Tan, S. H. Shalmany, G. C. Meijer, and M. A. Pertijs, "An energy-efficient 15-bit capacitive-sensor interface based on period modulation," IEEE Journal of Solid-State Circuits, vol. 47, pp. 1703-1711, 2012.
[28] S. Xia, K. Makinwa, and S. Nihtianov, "A capacitance-to-digital converter for displacement sensing with 17b resolution and 20μs conversion time," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 198-200.
[29] Z. Tan, R. Daamen, A. Humbert, Y. V. Ponomarev, Y. Chae, and M. A. Pertijs, "A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications," IEEE Journal of Solid-State Circuits, vol. 48, pp. 2469-2477, 2013.
[30] S. Oh, Y. Lee, J. Wang, Z. Foo, Y. Kim, W. Jung, et al., "A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system," IEEE Journal of Solid-State Circuits, vol. 50, pp. 1581-1591, 2015.
[31] J.-C. Chiou, S.-H. Hsu, C.-K. Kuei, and T.-W. Wu, "An addressable UHF EPCGlobal class1 gen2 sensor IC for wireless IOP monitoring on contact lens," in VLSI Design, Automation and Test (VLSI-DAT), 2015 International Symposium on, 2015, pp. 1-4.
[32] S.-H. Hsu, J.-C. Chiou, Y.-T. Liao, T.-S. Yang, C.-K. Kuei, T.-W. Wu, et al., "An RFID-based on-lens sensor system for long-term IOP monitoring," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015, pp. 7526-7529.
[33] G.-T. Yeh, T.-W. Wu, S.-W. Tsai, S.-H. Hsu, and J.-C. Chiou, "Toward a wireless contact lens sensor system with a micro-capacitor for intraocular pressure monitoring on in-vitro porcine eye," in SENSORS, 2015 IEEE, 2015, pp. 1-4.
[34] J.-C. Chiou, S.-H. Hsu, Y.-T. Liao, Y.-C. Huang, G.-T. Yeh, C.-K. Kuei, et al., "Toward a wirelessly powered on-lens intraocular pressure monitoring system," IEEE journal of biomedical and health informatics, vol. 20, pp. 1216-1224, 2016.
[35] S. Srinivasan and L. N. Subbaraman, "The science of contact lens discomfort: here's what's happening behind the scenes of your patient's discomfort--and what you can do about it," Review of Optometry, vol. 152, pp. 34-38, 2015.
[36] AMS AS3993 UHF RFID Reader datasheet. Available: http://www.ams.com/eng/Products/Wireless-Connectivity/Readers/AS3993
[37] C. S. GmbH. CISC RFID Xplorer. Available: https://www.cisc.at/products/rfid-xplorer/
[38] D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel, and B. P. Otis, "A 9uA Addressable Gen2 Sensor Tag for Biosignal Acquisition," IEEE Journal of Solid-State Circuits, vol. 45, pp. 2198-2209, 2010.
[39] R. J. Baker, CMOS: circuit design, layout, and simulation vol. 1: John Wiley & Sons, 2008.
[40] Y. Yao, J. Wu, Y. Shi, and F. F. Dai, "A fully integrated 900-MHz passive RFID transponder front end with novel zero-threshold RF–DC rectifier," IEEE Transactions on industrial electronics, vol. 56, pp. 2317-2325, 2009.
[41] M. Mi, "RFID radio circuit design in CMOS," Ansoft white paper, available at www. ansoft. com.
[42] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave circuit design using linear and nonlinear techniques: John Wiley & Sons, 2005.
[43] M. Krauss, M. Jaafar, K. Wang, and E. Hoffman, "Wide range charge balancing capacitive-to-digital converter," ed: Google Patents, 2013.
[44] P. V. Nikitin, K. Rao, and S. Lazar, "An overview of near field UHF RFID," in RFID, 2007. IEEE International Conference on, 2007, pp. 167-174.
[45] Y.-S. Chen, S.-Y. Chen, and H.-J. Li, "Analysis of antenna coupling in near-field communication systems," IEEE Transactions on antennas and propagation, vol. 58, pp. 3327-3335, 2010.
[46] X. Li, J. Liao, Y. Yuan, and D. Yu, "Eye-shaped segmented reader antenna for near-field UHF RFID applications," Progress In Electromagnetics Research, vol. 114, pp. 481-493, 2011.
[47] J.-C. Chiou, S.-H. Hsu, G.-T. Yeh, and C.-K. Kuei, "A WIRELESSLY POWERED RFID-BASED SMART CONTACT LENS SYSTEM," International Journal of Electrical Engineering vol. 24, pp. 167-175, 2017.
[48] T. Wessapan and P. Rattanadecho, "Specific absorption rate and temperature increase in the human eye due to electromagnetic fields exposure at different frequencies," International Journal of Heat and Mass Transfer, vol. 64, pp. 426-435, 2013.
[49] J.-C. Chiou, Y.-C. Huang, and G.-T. Yeh, "A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring," Journal of Micromechanics and Microengineering, vol. 26, p. 015001, 2015.
[50] N. Saeidi, A. Demosthenous, N. Donaldson, and J. Alderman, "Design and fabrication of corrosion and humidity sensors for performance evaluation of chip scale hermetic packages for biomedical implantable devices," in Microelectronics and Packaging Conference, 2009. EMPC 2009. European, 2009, pp. 1-4.
[51] P. V. Nikitin, K. S. Rao, R. Martinez, and S. F. Lam, "Sensitivity and impedance measurements of UHF RFID chips," IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 1297-1302, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔