|
[1] Intel document, “Voltage Regulator-Down (VRD) 11.0 Processor Power,” Processor Power Delivery Design Guidelines, Nov. 2006. [2] K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, and F. C. Lee, “Adaptive Voltage Position Design for Voltage Regulators,” in Proc. IEEE APEC, pp. 272-278, 2004. [3] Intel document, “AN 711: Power Reduction Features in Intel® Arria® 10 Devices,” May 2017. [4] P. Hazucha, S. T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, and T. Karnik, “High Voltage Tolerant Linear Regulator with Digital Control for Biasing of Integrated DC-DC Converters,” in IEEE J. Solid-State Circuits, pp. 66-73, Jan. 2007. [5] Y.-H. Lin, K.-L. Zheng, and K.-H. Chen, “Power MOSFET Array for Smooth Pole Tracking in LDO Regulator Compensation,” in IEEE Trans. Power Electron, pp. 2421-2427, Sep. 2008. [6] M. Al-Shyoukh, H. Lee, and R. Perez, “A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator with Buffer Impedance Attenuation,” in IEEE J. Solid-State Circuits, pp. 1732-1742, Aug. 2007. [7] Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P-H Chen, K. Watanabe, M. Takamiya, T. Sakurai, “0.5-V Input Digital LDO with 98.7% Current Efficiency and 2.7-μA Quiescent Current in 65nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010. [8] Y.-J. Lee, W. Qu, S. Singh, D.-Y. Kim, S.-H. Kim, J.-J. Park, G.-H. Cho “A 200mA Digital Low Drop-Out Regulator with Coarse-Fine Dual Loop in Mobile Application Processor” IEEE J. Solid-State Circuits, vol. 52, Issue: 1, Jan. 2017. [9] S. B. Nasir, A. Raychowdhury, “On Limit Cycle Oscillations in Discrete-Time Digital Linear Regulators” in Proc. IEEE APEC, pp.371-37,March 2015. [10] W.-C. Chen, S.-Y. Ping, T.-C. Huang, Y.-H. Lee “A Switchable Digital–Analog Low-Dropout Regulator for Analog Dynamic Voltage Scaling Technique” IEEE J. Solid-State Circuits, vol. 49 Issue: 3, March. 2014. [11] G. Patounakis, Y.-W. Li, and K.-L. Shepard, “A Fully Integrated On-Chip DC-DC Conversion and Power Management System,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 443-451, Mar. 2004. [12] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuit,” in IEEE Trans. Power Electron, pp. 1836-1846, Sep. 2007. [13] A. Makharia, G.A. Rincon-Mora “Integrating Power Inductors onto the IC-SOC Implementation of Inductor Multipliers for DC-DC Converters,” IEEE Industrial Electronics Society (IECON), Nov. 2003. [14] T. Burd, T. Pering, A. Stratakos, R. Brodersen, “A Dynamic Voltage Scaled Microprocessor System,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 294–295, Feb. 2000. [15] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. de Micheli, “Dynamic Voltage Scaling and Power Management for Portable Systems,” Proc. of Design Automation Conference, May, 2005. [16] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in Multiple Clock, Multiple Voltage Cores,” Proc. of International Conference on Computer Aided Design, pp. 379-386, Nov. 2002. [17] S. Dhar, G. Mortensen “Closed-loop adaptive supply voltage scaling controller for low-power embedded processors” in IEEE Technical, Professional and Student Development Workshop, IEEE Region 5 and IEEE Denver Section, April 2005. [18] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd, V. Pokala, “A Distributed Critical-Path Timing Monitor for a time, the edge bypasses the synthesis block, resets the bits in the 65nm High-Performance Microprocessor” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 398-399, Feb. 2007. [19] Richtek document, “Introduction to Richtek VCORE Solutions,” Application Note, May. 2017. [20] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Optimal design of the active droop control method for the transient response,” in Proc. IEEE APEC, pp.718-723, 2003 [21] Fan, S., Xue, Z., Lu, H., et al. “Area-efficient on-chip DC–DC converter with multiple-output for biomedical applications,” in IEEE Transactions on Circuits and Systems I, vol. 61, no. 11, pp.1671–1680, 2011. [22] Kim, J., Kim, D.S., and Kim, C. “A single-inductor eight-channel output DC–DC converter with timelimited power distribution control and single shared hysteresis comparator.” in IEEE Trans. Circuit and System I, vol. 60, no. 12, pp.3354–3367, 2013. [23] Y.-H. Lee, C.-C Chiu, S.-Y Peng, K.-H. Chen, Y.-H. Lin, C.-C. Lee, C.-C. Huang, T.-Y. Tsai, “A Near-Optimum Dynamic Voltage Scaling (DVS) in 65-nm Energy-Efficient Power Management With Frequency-Based Control(FBC) for SoC System” in IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2563-2575, Nov. 2012. [24] S.-Y. Peng, T.-C. Huang, Y.-H. Lee, C.-C. Chiu, K.-H. Chen, “Instruction-Cycle-Based Dynamic Voltage Scaling Power Management for Low-Power Digital Signal Processor With 53% Power Savings” in IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2649-2661, Nov. 2013. [25] D. Kwon, and Gabriel A. Rincón-Mora, “Single-Inductor Multiple-Output (SIMO) Switching DC–DC Converters,” in IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 443-451, Mar. 2004. [26] Y.-P. Su, C.-H. Lin, T.-F. Yang, R.-Y. Huang, W.-C. Chen, K.-H. Chen, Y.-H. Lin, T.-Y. Tsai, C.-C. Lee, “CCM/GM Relative Skip Energy Control in Single-Inductor Multiple-Output DC-DC Converter for Wearable Device Power Solution,” in Proc. Asian Solid-State Circuits Conference, pp. 65-68, Nov. 2014. [27] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, K.-H. Chen, and M.-J. Du, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter with Multilayer Ceramic Capacitors,” in IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366-2376, May. 2013. [28] M.-Y. Jung, S.-H. Park, J.-S. Bang, and G.-H. Cho, “An Error-Based Controlled Single-Inductor 10-Output DC-DC Buck Converter With High Efficiency Under Light Load Using Adaptive Pulse Modulation,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, Dec. 2015. [29] Lee, K.-C., Chae, C.-S., Cho, G.-H., and Cho, G.-H. “A PLL-based high-stability single-inductor 6-channel output DC–DC buck converter” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, pp. 200–201, Feb, 2010. [30] Ma, D., Ki, W.-H., and Tsui, C.-Y. “A pseudo-CCM/DCM SIMO switching converter with freewheel switching” in IEEE J. Solid-State Circuits, vol. 38, no. 6, 1007–1014, Jun. 2003. [31] C.-W. Kuan, H.-C. Lin, “Near-Independently Regulated 5-Output Single-Inductor DC-DC Buck Converter Delivering 1.2W/mm2 in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 274-276, Feb. 2012. [32] Y.-H. Lee, Y.-Y. Yang, S.-J. Wang, K.-H. Chen, Y.-H. Lin, Y.-K. Chen, and C.-C. Huang, “Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters with 91% Peak Efficiency,” in IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 904-914, Apr. 2011. [33] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Comparisons of Three control Schemes for Adaptive Voltage Positioning Droop for VRMs Applications,” in Proc. IEEE EPEPEMC, pp. 206-211, 2006. [34] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Design consideration for VRM transient response based on output impedance,” in Proc. IEEE APEC, pp.14-20, 2002. [35] M. Lee, D. Chen, and C.-W. Liu, “Modeling and Design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs,” in IEEE Trans. Power Electronics, vol. 23, pp. 1733-1742, Jul. 2008. [36] Y. Du, Q. Liu, and A. Q. Huang, “A Monolithic CMOS Synchronous Buck Converter with a Fast and Low-cost Current Sensing Scheme,” in Proc. ECCE, pp. 1849-1856, 2012. [37] C.-J. Chen, D. Chen, C.-S. Huang, M. Lee, and E. K.-L. Tseng, “Modeling and Design Considerations of a Novel High-Gain Peak Current Control Scheme to Achieve Adaptive Voltage Positioning (AVP) for DC Power Converters,” IEEE Trans. Power Electronics, vol. 24, pp. 2942-2950, Dec. 2009. [38] J. R. Huang, C.-S. Huang, C. J. Lee, and E. K.-L. Tseng, “Native AVP Control Method for Constant Output Impedance of DC Power Converters,” in Proc. PESC, pp. 2023-2028, 2007. [39] Pan and P. K. Jain,” A New Digital Adaptive Voltage Positioning Technique with Dynamically Varying Voltage and Current References,” IEEE Trans. Power Electronics, vol. 24, pp. 2612-2624, 2010. [40] A. V. Peterchev, X. Jinwen, and S. R. Sanders, "Architecture and IC implementation of a Digital VRM controller," IEEE Trans. Power Electron, vol. 18, no. 1, pp. 356-364, Jan. 2003. [41] L. Corradini, A. Costabeber, P. Mattavelli, and S. Saggini, “Time optimal, parameters-insensitive digital controller for VRM applications with adaptive voltage positioning,” in Proc. IEEE COMPEL, pp. 1–8, 2008. [42] J. A. Abu Qahouq, and V. Arikatla, “Power Converter With Digital Sensorless Adaptive Voltage Positioning Control Scheme,” in IEEE Trans. Industrial Electronics, vol. 58, pp. 4105-4116, Sep. 2011. [43] P. Gu and W. Li, “An architecture without current-sensing circuits for digital DC-DC controller to achieve adaptive voltage position,” in Proc. IEEE Appl. Power Electron. Conf., pp. 563-568, 2007. [44] M. Cho, S. Kim, C. Tokunaga, C. Augustine, J. Kulkarni, K. Ravichandran, J. Tschanz, M. Khellah, V. De, “Post-Silicon Voltage-Guard-Band Reduction in a 22nm Graphics Execution Core Using Adaptive Voltage Scaling and Dynamic Power Gating,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 152-154, Feb. 2016. [45] X. Zhang, G. Yao, and A. Q. Huang, “A novel VRM control with direct load current feedback,” in Proc. APEC, pp. 267-271, Sep. 2004. [46] B. L., K. H. “Under the Hood of Low-Voltage DC/DC Converters,” Sep. 2009. [47] S. Kapat, P. T. Krein “Improved Time Optimal Control of a Buck Converter Based on Capacitor Current,” in IEEE Trans. Power Electron. vol. 27, pp.1444-1454, Mar. 2012.
|