跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林莉琪
研究生(外文):Lin, Li-Chi
論文名稱:電壓調節器具有自動校正之雙迴路可調式電壓技術
論文名稱(外文):An Auto-Calibration Voltage Regulator Module with Dual-Loop Adaptive Voltage Position Technique
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:陳科宏王清松黃立仁
口試委員(外文):Chen, Ke-HorngWang, Ching-SungHuang, Li-Ren
口試日期:2017-10-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:76
中文關鍵詞:單電感多輸出直流-直流轉換器數位線性穩壓器動態調適電壓自適應調適電壓電源管理系統
外文關鍵詞:single-inductor-multi-output (SIMO) converterdigital low-dropout (DLDO) regulatordynamic voltage identification (DVID)adaptive voltage positioning (AVP)power-management (PMU)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技進步,運用在移動式裝置中的中央處理器需要擁有高速邏輯運算能力以及更高的可靠性和更高的穩定性,因此中央處理器的電力需求必須達到高效率、低耗能,使得中央處理器能有著更穩定的操作環境。因此運用在中央處理器的電壓轉換器需通常具備了動態電壓調節以及適應性電壓準位的技術,然而電壓轉換器在實現上述的技術下通常會增加額外的成本及面積。除此之外,由於中央處理器內含有多組核心,因此需要有多組電源供應器,在傳統架構中將高輸入電壓經由降壓轉換器降壓後再由多組的線性轉換器轉換成多組電源供應多組核心電壓,因為此架構以多組降壓轉換器以及多組的線性轉換器所組成,所以其功率轉換效率以及成本考量上並不佳,無法面對中央處理器嚴格的規範要求,因此本論文透過單電感多輸出轉換器配合多組的數位線性穩壓器來實現中央處理器的電壓供給模組。此電壓調節器第一級使用單電感多輸出調節器可以節省成本與面積,但由於先天的缺陷,單電感多輸出調節器會產生額外的輸出波紋,因此本架構在第二級轉換器中使用了數位線性穩壓器將多餘的電壓波紋濾除,除此之外利用了數位線性穩壓器的優點,使得能量耗損能最小化,並且透過數位控制、動態調適電壓和自適應調適電壓技術進一步調節整體電壓轉換器,進而優化了整體電壓供給模組的效能,以達到中央處理器的規範。
Owing to new technological advances, the central processor unit (CPU) used in mobile devices needs faster logic computing capability, higher reliability, and higher stability. In order to make the CPU operate in a stable environment, the power supply of the CPU requires high efficiency and low power consumption. Therefore, dynamic voltage identification (DVID) technique and adaptive voltage position (AVP) technique are usually implemented in the voltage regulator module (VRM) for the CPU. In addition, in conventional design, multiple DC-DC buck converters are used to provide multi-output voltage for the multi-cores of the CPU. However, this architecture is not suitable for the CPU because of the cost and area consideration. Consequently, a single inductor multi-output (SIMO) DC-DC converter becomes a good candidate due to the advantage of compact size and low cost. However, SIMO converter has larger output ripple and poor load variation response, which are not allowed by the CPU. As the result, each output of the SIMO converter needs to cascade a linear regulator to lower the output voltage ripple. However, due to the wide load range of CPU, the analog low-dropout (A-LDO) regulator requires larger dropout voltage, which degrades system power conversion efficiency. Therefore, the proposed VRM includes the SIMO converter and cascaded digital low-dropout (D-LDO) regulators which have low dropout voltage characteristic and thus lower the voltage ripple without degrading power conversion efficiency. Besides, the proposed VRM integrates AVP and DVID techniques as auto calibration dual-AVP (ACD-AVP) technique with the help of the D-LDO, thereby improving overall performance of the VRM under any load condition and OPPs.
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Fig. Captions vi
Table Captions ix
Chapter 1 Introduction 1
1.1 Background of CPU power managements 2
1.2 The basic topologies of VR 3
1.2.1 Linear regulator 4
1.2.2 Digital Low-Dropout (DLDO) Voltage Regulator 5
1.2.3 Analysis 7
1.2.4 SWR 8
1.3 Techniques of CPU power managements 9
1.3.1 DynamicVoltage Identification(DVID) 9
1.3.2 Adaptive Voltage Positioning (AVP) 11
1.4 Single-inductor multi-output (SIMO) converters 13
1.4.1 Ripple issue 14
1.4.2 Load issue 15
1.5 Thesis Organization 16
Chapter 2 Prior Arts and Design Goals 17
2.1 The control methods of SIMO converter 17
2.1.1 Energy Delivery Paths of SIMO 19
2.2 Technique of the AVP droop control 22
2.2.1 AVP- / AVP+ control 25
2.2.3 DigitalAVPcontrol 29
2.3 Reduce Voltage-Guard-Band Technique and Dynamic Power Gating Control 30
2.4 The target of VRM design for the Multi-Core Processor 32
2.4.1 Lower the output voltage ripple 33
2.4.2 Improvement of Transient Response 34
2.4.3 Optimal system conversion efficiency 35
Chapter 3 The proposed VRM with DVID and Auto Calibration Dual-AVP technique 37
3.1 The architecture of proposed VRM 38
3.2 The concept of proposed ACD-AVP technique 39
3.3 The design parameter in ACD-AVP technique 47
3.3.1 Output impedance of the SITO converter 47
3.3.2 Rdroop 48
3.3.3 Digital AVP control 51
3.4 Circuit implement of the DVR 53
3.4.1 Clocked comparator 60
3.5 Circuit implement of the SITO converter 61
3.6 The proposed VRM process 63
3.6.1 Flow chart of proposed VRM 64
Chapter 4 Simulation Results 65
4.1 Chip layout 65
4.2 Simulation Results 66
5.2.1 Steady State 66
5.2.2 Transient enhancement 67
5.2.3 The DVID mode 69
Chapter 5 Conclusion and Future Work 71
5.1 Conclusion 71
5.2 Future work 71
Reference 72
[1] Intel document, “Voltage Regulator-Down (VRD) 11.0 Processor Power,” Processor Power Delivery Design Guidelines, Nov. 2006.
[2] K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, and F. C. Lee, “Adaptive Voltage Position Design for Voltage Regulators,” in Proc. IEEE APEC, pp. 272-278, 2004.
[3] Intel document, “AN 711: Power Reduction Features in Intel® Arria® 10 Devices,” May 2017.
[4] P. Hazucha, S. T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, and T. Karnik, “High Voltage Tolerant Linear Regulator with Digital Control for Biasing of Integrated DC-DC Converters,” in IEEE J. Solid-State Circuits, pp. 66-73, Jan. 2007.
[5] Y.-H. Lin, K.-L. Zheng, and K.-H. Chen, “Power MOSFET Array for Smooth Pole Tracking in LDO Regulator Compensation,” in IEEE Trans. Power Electron, pp. 2421-2427, Sep. 2008.
[6] M. Al-Shyoukh, H. Lee, and R. Perez, “A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator with Buffer Impedance Attenuation,” in IEEE J. Solid-State Circuits, pp. 1732-1742, Aug. 2007.
[7] Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P-H Chen, K. Watanabe, M. Takamiya, T. Sakurai, “0.5-V Input Digital LDO with 98.7% Current Efficiency and 2.7-μA Quiescent Current in 65nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010.
[8] Y.-J. Lee, W. Qu, S. Singh, D.-Y. Kim, S.-H. Kim, J.-J. Park, G.-H. Cho “A 200mA Digital Low Drop-Out Regulator with Coarse-Fine Dual Loop in Mobile Application Processor” IEEE J. Solid-State Circuits, vol. 52, Issue: 1, Jan. 2017.
[9] S. B. Nasir, A. Raychowdhury, “On Limit Cycle Oscillations in Discrete-Time Digital Linear Regulators” in Proc. IEEE APEC, pp.371-37,March 2015.
[10] W.-C. Chen, S.-Y. Ping, T.-C. Huang, Y.-H. Lee “A Switchable Digital–Analog Low-Dropout Regulator for Analog Dynamic Voltage Scaling Technique” IEEE J. Solid-State Circuits, vol. 49 Issue: 3, March. 2014.
[11] G. Patounakis, Y.-W. Li, and K.-L. Shepard, “A Fully Integrated On-Chip DC-DC Conversion and Power Management System,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 443-451, Mar. 2004.
[12] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuit,” in IEEE Trans. Power Electron, pp. 1836-1846, Sep. 2007.
[13] A. Makharia, G.A. Rincon-Mora “Integrating Power Inductors onto the IC-SOC Implementation of Inductor Multipliers for DC-DC Converters,” IEEE Industrial Electronics Society (IECON), Nov. 2003.
[14] T. Burd, T. Pering, A. Stratakos, R. Brodersen, “A Dynamic Voltage Scaled Microprocessor System,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 294–295, Feb. 2000.
[15] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. de Micheli, “Dynamic Voltage Scaling and Power Management for Portable Systems,” Proc. of Design Automation Conference, May, 2005.
[16] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in Multiple Clock, Multiple Voltage Cores,” Proc. of International Conference on Computer Aided Design, pp. 379-386, Nov. 2002.
[17] S. Dhar, G. Mortensen “Closed-loop adaptive supply voltage scaling controller for low-power embedded processors” in IEEE Technical, Professional and Student Development Workshop, IEEE Region 5 and IEEE Denver Section, April 2005.
[18] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd, V. Pokala, “A Distributed Critical-Path Timing Monitor for a time, the edge bypasses the synthesis block, resets the bits in the 65nm High-Performance Microprocessor” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 398-399, Feb. 2007.
[19] Richtek document, “Introduction to Richtek VCORE Solutions,” Application Note, May. 2017.
[20] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Optimal design of the active droop control method for the transient response,” in Proc. IEEE APEC, pp.718-723, 2003
[21] Fan, S., Xue, Z., Lu, H., et al. “Area-efficient on-chip DC–DC converter with multiple-output for biomedical applications,” in IEEE Transactions on Circuits and Systems I, vol. 61, no. 11, pp.1671–1680, 2011.
[22] Kim, J., Kim, D.S., and Kim, C. “A single-inductor eight-channel output DC–DC converter with timelimited power distribution control and single shared hysteresis comparator.” in IEEE Trans. Circuit and System I, vol. 60, no. 12, pp.3354–3367, 2013.
[23] Y.-H. Lee, C.-C Chiu, S.-Y Peng, K.-H. Chen, Y.-H. Lin, C.-C. Lee, C.-C. Huang, T.-Y. Tsai, “A Near-Optimum Dynamic Voltage Scaling (DVS) in 65-nm Energy-Efficient Power Management With Frequency-Based Control(FBC) for SoC System” in IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2563-2575, Nov. 2012.
[24] S.-Y. Peng, T.-C. Huang, Y.-H. Lee, C.-C. Chiu, K.-H. Chen, “Instruction-Cycle-Based Dynamic Voltage Scaling Power Management for Low-Power Digital Signal Processor With 53% Power Savings” in IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2649-2661, Nov. 2013.
[25] D. Kwon, and Gabriel A. Rincón-Mora, “Single-Inductor Multiple-Output (SIMO) Switching DC–DC Converters,” in IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 443-451, Mar. 2004.
[26] Y.-P. Su, C.-H. Lin, T.-F. Yang, R.-Y. Huang, W.-C. Chen, K.-H. Chen, Y.-H. Lin, T.-Y. Tsai, C.-C. Lee, “CCM/GM Relative Skip Energy Control in Single-Inductor Multiple-Output DC-DC Converter for Wearable Device Power Solution,” in Proc. Asian Solid-State Circuits Conference, pp. 65-68, Nov. 2014.
[27] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, K.-H. Chen, and M.-J. Du, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter with Multilayer Ceramic Capacitors,” in IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366-2376, May. 2013.
[28] M.-Y. Jung, S.-H. Park, J.-S. Bang, and G.-H. Cho, “An Error-Based Controlled Single-Inductor 10-Output DC-DC Buck Converter With High Efficiency Under Light Load Using Adaptive Pulse Modulation,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, Dec. 2015.
[29] Lee, K.-C., Chae, C.-S., Cho, G.-H., and Cho, G.-H. “A PLL-based high-stability single-inductor 6-channel output DC–DC buck converter” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, pp. 200–201, Feb, 2010.
[30] Ma, D., Ki, W.-H., and Tsui, C.-Y. “A pseudo-CCM/DCM SIMO switching converter with freewheel switching” in IEEE J. Solid-State Circuits, vol. 38, no. 6, 1007–1014, Jun. 2003.
[31] C.-W. Kuan, H.-C. Lin, “Near-Independently Regulated 5-Output Single-Inductor DC-DC Buck Converter Delivering 1.2W/mm2 in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 274-276, Feb. 2012.
[32] Y.-H. Lee, Y.-Y. Yang, S.-J. Wang, K.-H. Chen, Y.-H. Lin, Y.-K. Chen, and C.-C. Huang, “Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters with 91% Peak Efficiency,” in IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 904-914, Apr. 2011.
[33] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Comparisons of Three control Schemes for Adaptive Voltage Positioning Droop for VRMs Applications,” in Proc. IEEE EPEPEMC, pp. 206-211, 2006.
[34] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Design consideration for VRM transient response based on output impedance,” in Proc. IEEE APEC, pp.14-20, 2002.
[35] M. Lee, D. Chen, and C.-W. Liu, “Modeling and Design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs,” in IEEE Trans. Power Electronics, vol. 23, pp. 1733-1742, Jul. 2008.
[36] Y. Du, Q. Liu, and A. Q. Huang, “A Monolithic CMOS Synchronous Buck Converter with a Fast and Low-cost Current Sensing Scheme,” in Proc. ECCE, pp. 1849-1856, 2012.
[37] C.-J. Chen, D. Chen, C.-S. Huang, M. Lee, and E. K.-L. Tseng, “Modeling and Design Considerations of a Novel High-Gain Peak Current Control Scheme to Achieve Adaptive Voltage Positioning (AVP) for DC Power Converters,” IEEE Trans. Power Electronics, vol. 24, pp. 2942-2950, Dec. 2009.
[38] J. R. Huang, C.-S. Huang, C. J. Lee, and E. K.-L. Tseng, “Native AVP Control Method for Constant Output Impedance of DC Power Converters,” in Proc. PESC, pp. 2023-2028, 2007.
[39] Pan and P. K. Jain,” A New Digital Adaptive Voltage Positioning Technique with Dynamically Varying Voltage and Current References,” IEEE Trans. Power Electronics, vol. 24, pp. 2612-2624, 2010.
[40] A. V. Peterchev, X. Jinwen, and S. R. Sanders, "Architecture and IC implementation of a Digital VRM controller," IEEE Trans. Power Electron, vol. 18, no. 1, pp. 356-364, Jan. 2003.
[41] L. Corradini, A. Costabeber, P. Mattavelli, and S. Saggini, “Time optimal, parameters-insensitive digital controller for VRM applications with adaptive voltage positioning,” in Proc. IEEE COMPEL, pp. 1–8, 2008.
[42] J. A. Abu Qahouq, and V. Arikatla, “Power Converter With Digital Sensorless Adaptive Voltage Positioning Control Scheme,” in IEEE Trans. Industrial Electronics, vol. 58, pp. 4105-4116, Sep. 2011.
[43] P. Gu and W. Li, “An architecture without current-sensing circuits for digital DC-DC controller to achieve adaptive voltage position,” in Proc. IEEE Appl. Power Electron. Conf., pp. 563-568, 2007.
[44] M. Cho, S. Kim, C. Tokunaga, C. Augustine, J. Kulkarni, K. Ravichandran, J. Tschanz, M. Khellah, V. De, “Post-Silicon Voltage-Guard-Band Reduction in a 22nm Graphics Execution Core Using Adaptive Voltage Scaling and Dynamic Power Gating,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 152-154, Feb. 2016.
[45] X. Zhang, G. Yao, and A. Q. Huang, “A novel VRM control with direct load current feedback,” in Proc. APEC, pp. 267-271, Sep. 2004.
[46] B. L., K. H. “Under the Hood of Low-Voltage DC/DC Converters,” Sep. 2009.
[47] S. Kapat, P. T. Krein “Improved Time Optimal Control of a Buck Converter Based on Capacitor Current,” in IEEE Trans. Power Electron. vol. 27, pp.1444-1454, Mar. 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 應用於通用序列匯流排C型充電裝置之120W高效率非反向升降壓直流-直流轉換器
2. 具有自動匹配點搜索控制之零電壓切換與零電壓導數切換之6.78兆赫茲氮化鎵E類共振式無線電力傳輸系統
3. 應用於音訊放大器之可適應性補償機制單電感雙極性輸出直流-直流電源轉換器
4. 應用於萬物聯網之具有增強安全性的降壓型直流對直流轉換器基於真隨機數的偽遲滯控制
5. 具有突發模式的高效率和快速暫態反應之數位低壓差穩壓器對應於DC-DC開關轉換器的節能模式
6. 應用於音頻放大器之追蹤參考電壓功能的單電感正負壓雙極輸出轉換器
7. 應用於音訊放大器之高效率可調頻之單電感雙極性直流直流電源轉換器
8. 具有正和負輸出的雙相串聯電容直流對直流轉換器
9. 增強波跟蹤控制型降壓電源轉換器的輕載效率
10. 應用於低功率物聯網產品具有飛跨電容自適應平衡技術之三階直流-直流降壓轉換器
11. 應用於物聯網之具有高效率之時序降壓型直流對直流轉換器基於脈衝寬度調變及脈衝頻率調變無縫轉換控制
12. 帶有可調式電容技術的低輸出漣波和快速暫態響應 三級單電感三輸出電壓轉換器
13. 具有最佳轉換比快速搜索方案的全積體多轉換比切換式電容直流對直流電壓轉換器
14. 具高效率的E類差動無線功率發射器藉電荷面積優化和差動誤差校準以實現零電壓切換
15. 應用於高解析度及動態有效距離自駕車光達系統具有電流脈衝平衡技術達到次奈秒電流脈衝寬度之數位型砷化鎵驅動器