跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝東泰
研究生(外文):Hsieh, Tung-Tai
論文名稱:超越UGC:洞察使用者體驗品質映建線上串流平台
論文名稱(外文):Beyond UGC: Discovering Quality of User Experience in Contriving Online Video Streaming Platform
指導教授:唐瓔璋唐瓔璋引用關係張順全張順全引用關係
指導教授(外文):Tang, Ying-ChanChang, Shuen-Chuan
口試委員:丁承
口試委員(外文):Ding, Cherng
口試日期:2018-06-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:49
中文關鍵詞:隨選視訊使用者生成內容體驗品質文字探勘長尾理論
外文關鍵詞:Video on DemandUser Generated ContentQuality of ExperienceText MiningLong Tail Theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
隨著網路科技發達及手機、平板等影音裝置普及,輔以各國高網路覆蓋率和WIFI普及,市場對於影音需求有十分顯著的變化。而產業也因應其變化出現各式各樣的新媒體或影音服務模式,傳統媒體企圖透過國際化、增加互動等方式吸引用戶,但線上串流平台的Video on Demand模式及個體戶自媒體的形成在在威脅著傳統媒體的地位。故針對現在環境的變化輔以電腦科技的進步,本研究提出更適切的體驗品質調查方式以了解市場對於影音服務的需求。

本研究以使用者生成的內容(UGC)為核心概念去映建體驗品質,以往的體驗品質有嚴重的樣本偏誤及無法了解各客觀因素間比重和交互作用的問題。本研究以文字探勘的方式對研究標的於社群媒體中的資料進行分析,透過社群媒體中的貼文及回應去了解主觀陣列。而客觀陣列則以串流平台內部的點評資料及觀看行為進行分析。透過這些使用者生成內容(UGC)的資料更能夠忠實的映建出使用者真正的想法,而非以往解構體驗品質架構下有樣本偏誤的結果。
With the development of Internet technology and the popularization of audio and video devices such as mobile phones and tablets, supplemented by the high internet coverage and WIFI penetration in various countries, the market has a very lively change in demand for audio and video. In response to the changes in the industry, various new media or video and audio service models have emerged. Traditional media attempts to attract users through internationalization and increased interaction, but the video on Demand model and self-employed media of online streaming platforms are formed. Threatening the status of traditional media. Therefore, in response to the changes in the current environment and the advancement of computer technology, this study propose a more appropriate method of surveying the quality of experience in order to understand the market demand for audio and video services.

In this study, user-generated content (UGC) is used as the core concept to contrive quality of experience. Previous method for quality of experience has serious sample biases and the inability to understand the proportion and interaction of various objective factors. This study uses text mining to analyze the data of user generated content in social media, and understands subjective matrix through posts and responses in social media. The objective matrix is based on comment data and viewing behavior within the streaming platform. Through these User Generated Content data, it is possible to reflect the true ideas of users rather than the framework of deconstructing quality of experience that has serious sample bias.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii

第一章 緒論 1

1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究流程 2

第二章 文獻回顧與產業回顧 4

2.1 影音服務產業環境 4
2.2 媒體產業簡介 4
2.2.1 傳統媒體 5
2.2.2 自媒體 5
2.2.3 線上串流平台(Video on Demand) 6
2.3 體驗品質(Quality of Experience)簡介 6
2.3.1 影音傳遞技術 7
2.3.2 體驗品質(QoE)陣列 11
2.4 UGC 模式 12

第三章 研究方法 15

3.1 研究概念 15
3.2 研究架構 16
3.3 資料來源與處理 17
3.4 資料分析方法 18
3.4.1 文字探勘 18
3.4.2 大數據分析 19
3.4.3 品牌發展指數(BDI)與品類發展指數(CDI) 20
3.4.4 長尾理論 21
第四章 研究結果 22
4.1 主觀陣列 22
4.1.1 網路爬蟲 22
4.1.2 文字探勘分析 24
4.1.3 主觀陣列分析 28
4.2 客觀陣列 29
4.2.1 人口資料分析 29
4.2.2 影音內容分析 30
4.2.3 影音內容評點分析 31
4.2.4 使用者行為分析 36
4.2.5 客觀陣列分析 38
4.3 UGC 體驗品質 40
4.3.1 主觀陣列差異 40
4.3.2 客觀陣列差異 40

第五章 結論與建議 42

5.1 結論 42
5.1.1 體驗品質 42
5.1.2 影音內容分群結果 42
5.1.3 影音內容異質性 43
5.1.4 管理意涵 44
5.2 研究限制 45
5.3 未來研究方向 46

參考文獻 47
1. Adhikari, V. K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M. and Zhang, Z. 2012. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. Proceedings IEEE INFOCOM.
2. Anderson, J. R. and Bower, G. H. Human Associative Memory. Washington, DC: Wiley, 1973.
3. Anderson, C. 2004. The long tail. Wired magazine, 12(10), 170-177.
4. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., & Ramakrishnan, K. K. (2010, November). Optimal content placement for a large-scale VoD system. In Proceedings of the 6th International Conference 4. ACM.
5. Aral, S. and Walker, D. 2012. Identifying Influential and Susceptible Members of Social Networks. Science, 337(6092): 337-341.
6. Atalay, A. S., Bodur, H. O., & Rasolofoarison, D. (2012). Shining in the center: Central gaze cascade effect on product choice. Journal of Consumer Research, 39(4): 848-866.
7. Batra, R. and Keller, K. L. 2016. Integrating Marketing Communications: New Findings, New Lessons, and New ideas. Journal of Marketing, 80: 122-145.
8. Berry, M. W. (2004). Survey of text mining. Computing Reviews, 45(9), 548.
9. Bonn, M. A., & Brand, R. R. 1995. Identifying market potential: The application of brand development indexing to pleasure travel. Journal of Travel Research, 34(2): 31-35.
10. Brynjolfsson, E., Hu, Y., & Simester, D. (2011). Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management Science, 57(8), 1373-1386.
11. Chang, Y. and Thorson, E.2004. Television and Web Advertising Synergies. Journal of Advertising, 33: 75-84.
12. Cheong, H. J., & Morrison, M. A. (2008). Consumers’ reliance on product information and recommendations found in UGC. Journal of Interactive Advertising, 8(2), 38-49.
13. Dellarocas, C., Gao, G., & Narayan, R. 2010. Are consumers more likely to contribute online reviews for hit or niche products?. Journal of Management Information Systems, 27(2): 127-158.
14. Edwards, J., McCurley, K., & Tomlin, J. 2001. An adaptive model for optimizing performance of an incremental web crawler. In Proceedings of the 10th international conference on World Wide Web: 106-113. ACM.
15. Gensler, S., Völckner, F., Egger, M., Fischbach, K. and Schoder, D. Listen to Your Customers: Insights into Brand Image Using Online Consumer-Generated Product Reviews. International Journal of Electronic Commerce, 20: 112-141.
16. Heydon, A., & Najork, M. 1999. Mercator: A scalable, extensible web crawler. World Wide Web, 2(4): 219-229.
17. Hoßfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., & Schatz, R. (2011, December). Quantification of YouTube QoE via crowdsourcing. In Multimedia (ISM), 2011 IEEE International Symposium : 494-499. IEEE.
18. Huang, Y., Fu, T. Z., Chiu, D. M., Lui, J., & Huang, C. (2008). Challenges, design and analysis of a large-scale p2p-vod system. ACM SIGCOMM computer communication review, 38(4): 375-388.
19. Jockers, M. L. 2014. Text Analysis with R for Students of Literature.
20. Joinson, A. N. 2008. Looking at, looking up or keeping up with people?: motives and use of facebook. Proceedings of the SIGCHI conference on Human Factors in Computing Systems: 1027-1036. ACM.
21. Juluri, P., Tamarapalli, V. amd Medhi, D. 2016. Measurement of Quality of Experience of Video-on-Demand Services: A Survey. IEEE Communication Surveys & Tutorials, 18: 401-418.
22. Klitmøller, A. and Lauring, J. 2013. When Global Virtual Teams Share Knowledge: Media Richness, Cultural Difference and Language commonality.Journal of World Business, 48: 398–406.
23. Kim, H. J., Lee, D. H., Lee, J. M., Lee, K. H., Lyu, W., & Choi, S. G. (2008, September). The QoE evaluation method through the QoS-QoE correlation model. In Networked Computing and Advanced Information Management, 2008. NCM'08. Fourth International Conference: 719-725. IEEE.
24. Lamberton, C. and Stephen, T. A. 2016. A Thematic Exploration of Digital, Social Media, and Mobile Marketing: Research Evolution from 2000 to 2015 and an Agenda for Future Inquiry. Journal of Marketing, 80: 146-172.
25. Larsen, B., & Aone, C. 1999. Fast and effective text mining using linear-time document clustering. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining: 16-22. ACM.
26. Lenhart, A., Purcell, K., Smith, A., & Zickuhr, K. (2010). Social Media & Mobile Internet Use among Teens and Young Adults. Millennials. Pew internet & American life project.
27. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
28. Mei, Q. Zhai, C. 2005. Discovering evolutionary theme patterns from text: an exploration of temporal text mining. Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. ACM: 198-207.
29. Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. 1990. Introduction to WordNet: An on-line lexical database. International journal of lexicography, 3(4): 235-244.
30. Mitesser, O., Heinz, M., Havemann, F., & Gläser, J. 2008. Measuring diversity of research by extracting latent themes from bipartite networks of papers and references.
31. Moon, S., Bergey, P. K. & Lacobucci, D. 2010. Dynamic Effects Among Movie Ratings, Movie Revenues, and Viewer Satisfaction. Journal of Marketing, 74: 108-121.
32. Punj, G., & Stewart, D. W. 1983. Cluster analysis in marketing research: Review and suggestions for application. Journal of marketing research, 134-148.
33. Riiser, H., Endestad, T., Vigmostad, P., Griwodz, C., & Halvorsen, P. 2012. Video streaming using a location-based bandwidth-lookup service for bitrate planning. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 8(3), 24.
34. Shkapenyuk, V., & Suel, T. 2002. Design and implementation of a high-performance distributed web crawler. In Data Engineering, 2002. Proceedings. 18th International Conference: 357-368. IEEE.
35. Tan, T. F., & Netessine, S. 2009. Is Tom Cruise threatened? Using Netflix Prize data to examine the long tail of electronic commerce.Wharton Business School, University of Pennsylvania, Philadelphia.
36. Thelwall, M. 2001. A web crawler design for data mining. Journal of Information Science, 27(5): 319-325.
37. Thompson, B. 2004. Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association.
38. Wardle, C., & Williams, A. (2010). Beyond user-generated content: a production study examining the ways in which UGC is used at the BBC. Media, Culture & Society, 32(5), 781-799.
39. Wedel, M., & Kannan, P. K. 2016. Marketing analytics for data-rich environments. Journal of Marketing, 80(6): 97-121.
40. Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top