跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾竹暘
研究生(外文):Tseng, Chu-Young
論文名稱:非理想反電動勢下之直流無刷馬達換相點三相流之轉矩漣波抑制
論文名稱(外文):Commutation Torque Ripple Reduction of Brushless DC Motor with Non-ideal Back EMF
指導教授:李安謙
指導教授(外文):Lee, An-Chen
口試委員:李安謙鄭中緯洪榮煌
口試委員(外文):Lee, An-ChenCheng, Chung-weiHorng, Rong-Hwang
口試日期:2017-08-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:換相點之三相流無刷直流馬達轉矩漣波非理想反電動勢
外文關鍵詞:commutationBrushless dc motortorque ripplenon-ideal back EMF
相關次數:
  • 被引用被引用:4
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直流無刷馬達因具有高效率轉換、高可靠性及免維護性等優勢,以及近年來政府極力推動節能減碳的政策,因此被廣泛的應用在工業場合與日常生活中。直流無刷馬達驅動主要問題有三:第一個為切換點之不準確。第二個為非理想反電動勢效應,一般對於直流無刷馬達之反電動勢均假設其擁有理想之梯形氣隙磁通分布,因此反電動勢水平區間為理想之120度,此設計是為達成最小之轉矩漣波,然而實際上由於轉子磁性材料結構,以及電樞反應等因素影響之下,並不容易達到理想120度水平寬度的梯形波,進而造成轉矩漣波而降低效率。第三個是換相後因電感的存在造成之三相流區間,也會造成轉矩漣波。假設換相點為準確的情況下,當加高負載後,換相後的三相流情況變得更為顯著,將成為主要問題。
本文對換相後之三相流區間對電流波形與電磁轉矩的影響進行分析與研究,並藉由推導得知三相流區間責任周期之補償方法,消除換相區間之電感效應對馬達輸出轉矩的影響。由於三相流區間牽涉到暫態響應的問題,故若以理論分析計算三流區間之長度必須有馬達精準的電氣參數,但馬達電氣參數受到高頻PWM運作及馬達運轉造成之溫升影響下並非定值,故三相流區間長度之運算難以保證準確。而因三相流效應造成換相後之電流波型成凹陷狀,但若成功補償後電流波型則趨近對稱的波型。故本文提出以電流積分法,可以在不知道馬達之電氣參數的狀況下得到三相流區間長度,此方法透過非切換相之相電流於其他兩相電流換相前5度的導通區間做積分及非切換相之相電流於其他兩相電流換相後5度的導通區間做積分,兩區間之電流積分差值作為漣波指標,此差值可利用比例積分控制器回授消除,進而得知不同運轉狀況下馬達上下臂切換期間各別所需補償之三相流區間長度,最後在切換後的三相流區間以推導得知所需之責任週期進行補償,消除馬達受三相流影響所產生的轉矩漣波。
Brushless DC motors (BLDCM) are extensively used in recent years due to the effort from government on promoting energy conservation and reducing carbon footprint. Also, it has the advantages of high efficiency and high reliability.
Generally, the back-EMF of brushless DC motors is assumed to have an ideal trapezoidal air gap flux distribution with flat width of the back-EMF being 120 degree so that the motor can achieve minimum torque ripple. However, under the influence of the rotor magnetic structure, armature reaction and other factors, it is not easy to achieve the ideal trapezoidal flux distribution in air gap. Furthermore, the three phase current exists due to inductance flyback, which distort the non-commuted phase current and further lead to torque ripple. Therefore, these two situations will cause torque ripple and reduce the motor efficiency. But when increase the load, the inductance effect at commutation time will be the major problem.
The inductance effect at commutation time is a problem of transient response. The thesis first analysis the duty ratio which should be compensated during commutation time for the both cases of non-commutated state of upper and lower bridge. But the calculation of commutation time is hard to be accurate in practice. Consequently, we submitted a current integral method to find commutation time without calculation or detection circuit. So, this method is robust to electrical parameters of motor. The simulation and experiment at different situations are given to verify the proposed method.
中文摘要 I
ABSTRACT III
CONTENTS VI
表目錄 VIII
圖目錄 IX
CHAPTER 1. 簡介 1
1.1研究動機與背景 1
1.2文獻回顧 2
1.3研究方法 4
CHAPTER 2. 直流無刷馬達原理 5
2.1 直流無刷馬達的數學模型 5
2.2六步方波導通法 8
2.3脈波寬度調變 12
2.4理想反電動勢及非理想反電動勢區間之反電動勢關係式分析 14
CHAPTER 3. 換相三相流區間長度及區間內責任周期補償之推導 17
3.1換相時之三相流現象 17
3.2換相之三相流區間長度 18
3.2.1 上臂切換之三相流區間長度 18
3.2.2 下臂切換之三相流區間長度 19
3.2.3 實際電流波型上下臂三相流區間長度試算 21
3.3三相流區間內之責任周期補償推導 23
3.3.1 上臂切換之三相流區間之責任週期補償推導 23
3.3.2 下臂切換之三相流區間之責任週期補償推導 25
3.3.3 模擬上下臂切換補償前後之三相流情況 27
CHPATER4. 運用電流積分找尋上下臂切換個別之三相流時間 34
4.1 利用電流積分找尋上下臂個別之三相流時間 34
4.2 電流積分法之討論 35
4.3 控制器設計與控制迴路分析 39
CHAPTER 5. 換相之三相流區間補償實驗結果 44
5.1實驗設備 44
5.2 電流積分法之三相流補償結果 47
5.2.1 無負載變轉速補償實驗 47
5.2.2 變負載定轉速補償實驗 49
5.3 電流積分法找出之三相流區間長度與實際三相流區間長度比較 51
5.4 上升相電流及衰退相電流補償前後之時間比較 53
5.5 振動實驗結果 57
5.6功率驗證結果 62
5.7加入責任週期控制法後之結果比較 64
5.7.1非理想反電動勢下欲產生定轉矩之理想電流波型推導 65
5.7.2 加入責任週期控制法改善非理想反電動勢後之實驗結果比較 68
CHAPTER6. 結論與未來工作 76
6.1結論 76
6.2未來工作 77
參考文獻 78
[1] R. Calson, M. Lajoie-Mazenc,and J. Fagundes,”Analysis of torque ripple due to phase commutation in brushless dc machines,”IEEE Trans. Ind. April., vol.28, no. 3, pp. 632-638,May/Jun. 1992.
[2] H. S. Chuang and Y.-L. Ke, “Analysis of commutation torque ripple using different PWM modes in BLDC motors,” in Conf. Rec. IEEE Ind. Commercial Power Syst. Tech. Conf., 2009, pp. 1-6.
[3] Won-Sang Im, Jong-Pil Kim, Jang-Mok Kim, and Kwang-Ryul Baek," Torque Maximization Control of 3-Phase BLDC Motors in the High Speed Region," Journal of Power Electronics , vol. 1, No. 6, pp. 717-723, 2010
[4] K. Y. Nam, W. T. Lee, C. M. Lee, and J. P. Hong, “Reducing torque ripple of brushless dc motor by varing input voltage,” IEEE Trans. Magn. , vol. 42, no. 4, pp. 1307-1310, Apr. 2006.
[5] X. F. Zhang, Q. B. Hu, and Z. Y. Lu, “Torque ripple reduction in brushless dc motor drivers using a buck converter,” Trans. China Electrotech. Soc., vol. 20, no. 9, pp. 72-81, Sep. 2005.
[6] T.Shi, Y. Guo, P. Song, and C. Xia, “A new approach of minimizing commutation torque ripple for brushless dc motor based on dc-dc conveter,” IEEE Trans. Ind. Electron., vol. 57, no.10, pp. 3483-3490, Oct. 2010.
[7] Jiancheng Fand,Haitao Li and Bangcheng Han, “Torque Ripple Reduction in BLDC Torque Motor With nonideal Back EMF,”IEEE Trans. on Power Electronics,vol.27 ,no.11,pp 4630-4637,2012
[8] Jian Shi and Tie-Cai Li, “New Method to Eliminate Commutation Torque Ripple of Brushless DC Motor With Minimum Commutation Time,” IEEE Trans. ON INDUSTRIAL ELECTRONICS, vol. 60, no. 6, pp.2139-2146, July. 2013.
[9] Y. Liu, Z. Q. Zhu, and D. Howe, “Commutation-torque-ripple minimization in direct-torque-controlled PM brushless dc divers,” IEEE Trans. Ind. Appl., vol.43, no. 4, pp. 1012-1021, Jul./Aug. 2007.
[10] Dae-Kyong Kim, Kwang-Woon Lee, and Byung-Il Kwon," Commutation Torque Ripple Reduction in a Position Sensorless Brushless DC Motor Drive," IEEE Transactions on Energy Conversion,.vol.21,No.6, pp. 1762-1768, 2006.
[11] Y. K. Lin and Y. S. Lai, “Pulsewidth modulation technique for BLDCM drivers to reduce commutation torque ripple without calculation of commutation time,” IEEE, Trans. Ind. Appl., vol. 47, no. 4, pp. 1786-1793, Jul./Aug. 2011.
[12] T. M. Jahns and W. L. Soong, "Pulsating torque minimization techniques for permanent magnet ac motor drives—A review," IEEE Trans. on Power Electronics, vol. 43, no. 2, pp. 321–330, 1996.
[13] Seog-Joo Kang and Seung-Ki Sul, " Direct Torque Control of Brushless DC Motor with Nonideal Trapezoidal Back EMF," IEEE Trans. on Power Electronics, vol. 10, no.6, pp. 796–802, 1995.
[14] N. Samoylenko,Q.Han, and J. Jatskevich, “Balancing hall-effect signals in low-precision brushless dc motors,” in Proc. IEEE Appl. Power Electron.Conf., Anaheim, CA, Feb.–28 Mar.2007, pp. 606–611.
[15] N. Samoylenko, Qiang Han, J. Jatskevich , “Dynamic Performance of Brushless DC Motors With Unbalanced Hall Sensors”, IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 752 – 763, 2008.
[16] Jun-Hyuk Choi, Joon Sung Park, Bon-Gwan Gu, Jin-Hong Kim, Chung-Yuen Won, "Position estimation and control of BLDC motor for VVA module with unbalanced hall sensors," IEEE International Conference on Power and Energy (PECon), 2012, pp.390-395
[17] 陳冠宏,「無感測器直流無刷馬達非理想反電動勢之轉矩漣波抑制」,碩士論文,國立交通大學機械研究所,2016
[18] J. C. Gamazo-Real, E. Vázquez-Sánchez, and J. Gómez-Gil, "Position and speed control of brushless dc motors using sensorless techniques and application trends," Sensors, vol. 10, pp. 6901-6947, 2010.
[19] A. C. Lee, S. Wang, and C. J. Fan,” A Current Index Approach to Compensate Commutation Phase Error for Sensorless Brushless DC Motors With Nonideal Back EMF,” IEEE Trans. on Power Electronics, vol. 31, no. 6, pp. 4389–4399, 2016.
[20] A. C. Lee, C. J. Fan, and C. H. Chen ”Current Integral Method for Fine Commutation Tunning of sensorless Brushless DC Motor,” IEEE Trans. on Power Electronics, no. 6, pp. 4389–4399, 2017.
[21] 郭奎廷,「基於無感測器無刷直流馬達之參數鑑別」,碩士論文,國立交通大學機械研究所,2014
[22] Kaiyu Wang, Chiasson J., Bodson M. and Tolbert L. M. “A nonlinear least-squares approach for identification of the induction motor parameters”, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, vol. 50, no. 10, OCTOBER 2005.
[23] 劉正斌,「無位置感測器直流無刷馬達新型換相技術之研究」,碩士論文,國立交通大學機械研究所,2012
[24] 范家瑞,「無感測器直流無刷馬達電流積分換相誤差補償」,碩士論文,國立交通大學機械研究所,2015
[25] N. F. Macia, and G. J. Thaler, "Modeling and Control of Dynamic Systems," Thomson Delmar Learning: New York, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊