(44.192.10.166) 您好!臺灣時間:2021/03/06 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥辰
研究生(外文):Chen, Yen-Chen
論文名稱:可偵測骨科骨板之固定螺絲鎖緊力之 被動無線感測裝置
論文名稱(外文):A passive wireless sensor for locking force on orthopedics locking plate and screw system
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Hsu, Wensyang
口試委員:陳宗麟鍾添淦楊裕雄
口試委員(外文):Chen, Tsung-LinChung, Tien-KanYang, Yuh-Shyong
口試日期:2017-8-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:41
中文關鍵詞:LC感測器骨釘骨板系統無線被動
外文關鍵詞:LC sensorLocking screw and plate systemwirelesspassive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨板固定系統(locking plate and screw system)是用於骨科中固定四肢骨時所使用,強化病人的四肢骨強度。若骨板固定系統之螺絲於手術時或手術後復健期間鬆動,會減弱四肢骨患部固定效果,使骨頭融合的成效降低。而目前術後檢測的方法,只能透過X光由前向、側向或斷層掃描(CT)擷取患部影像來觀察骨板系統中螺絲固定狀況。此方法在短期內骨頭並未成長時並不精確,也不適合密集多次觀察,否則會使病人接受過多的輻射劑量。而本計畫之目標即是開發可偵測骨科骨板之固定螺絲鎖緊力之被動無線感測裝置,可提供用於小腿骨之骨板系統螺絲固定狀況及鬆動位置之即時監測能力。此感測裝置將以電感電容 (LC) 電路原理進行無線被動的感測,由於LC電路之共振頻率與其電感及電容值有關,所以利用一墊片式 (washer) 感測器,使螺絲鎖緊力影響此感測器之電容值,然後藉由量測LC電路共振頻率的變化,進而得知螺絲鎖緊力。此LC式被動感測裝置不但可以以無線讀取訊號,且無需裝設電池,僅外部讀取裝置需要連接電源,因此非常適合置放於人體體內。但感測裝置會受到感測端和讀取端間介質影響共振頻率及感測距離,需要依靠共振頻率變化量推估其鎖緊力變化量,同時感測距離也需要再提升,但比起以往X-ray觀測螺絲固定狀況,此感測裝置可以提供不同螺絲鎖緊力之量化數值,更精確地提供小腿骨上螺絲的固定狀況訊息給醫療人員,有助於提早判斷是否需接受其他改善療程。
Locking plate and screw system are used in orthopedic fixed limb bone which strengthens the patient's limb bone after surgery. If the locking plate and screw system are loosened during surgery or after surgery, the fixation effect of the limb bone is weakened, and the effect of bone fusion is reduced. The current detection method is X-ray. Using X-ray from the forward, lateral or tomography (CT) can detect the affected area of the image to observe the locking plate and screw. This method does not accurate when the bones don't grow in the short term. The method is also not suitable for intensive observation because the patient will accept too much radiation dose. The aim of this project is to develop a passive wireless sensor that detects the locking force of the fixed screw on the bone plate. It can provide immediate monitoring of the screw fixation for the bone. This sensor is a wireless passive sensor based on the principle of the inductor capacitance (LC) circuit. By using LC circuit principle, we can use the change of frequency to estimate the locking force of locking plate and screw system through this device. This sensor is a passive sensor, so it can be read without the battery installed. It is very suitable for placing into the human body. But the sensor will be affected by the medium between the reader and sensor. We need to rely on the change of resonance frequency to estimated change of locking force .Then the sensing distance also need to improve. Compared with the previous method(X-ray), this sensor can provide an accurate value of screw locking force. It can help to find locking plate and screw system loosening after surgery and can be treated as soon as possible.
摘要......i
Abstract......ii
誌謝......iv
目錄.......v
表目錄.......vii
圖目錄.......viii
第一章 緒論......1
1.1 研究動機......1
1.2 文獻回顧......2
1.2.1 臨床上監控螺釘鎖緊程度方法......2
1.2.2文獻整理與比較......3
1.3 研究目標......4
第二章 設計......6
2.1 性能規格與量測儀器規格訂定......6
2.2 運作方法......7
2.3 概念設計......8
2.4 細部設計......9
2.4.1天線尺寸、材料與規格之訂定......9
2.4.2力感測器尺寸、材料與規格之訂定......13
第三章 製造......18
3.1天線製作與量測......18
3.1.1製作......18
3.1.2天線規格量測–電感值與寄生電容......18
3.2力感測器製作與量測......20
3.2.1製作......20
3.2.2力感測器規格量測-電容值......21
3.3 組裝......22
3.3.1組裝天線及力感測器......22
3.3.2組裝後規格量測 – 感測距離與共振頻率......22
第四章 感測器性能量測......23
4.1鎖於木板上之力與共振頻率的關係量測......23
4.2鎖於真骨上之力與共振頻率的關係量測......25
4.3多頻段干擾量測......28
4.4多頻段感測器鎖緊力量測......30
4.5震動量測......33
4.6含介質鎖於真骨上之力與共振頻率的關係量測 ......35
第五章 總結......39
5.1 結論......39
5.2 未來工作......39
參考文獻 ......40
[1]林建良. (2012). Introduction of Locking plate system. December 19, from National Taiwan University, Web site: http://oplab.im.ntu.edu.tw/vetweb/system/application/views/ContinuingEducation/CE_136.pdf
[2] Neogi, D. S., Trikha, V., Mishra, K. K., Bandekar, S. M., & Yadav, C. S. (2015). Comparative study of single lateral locked plating versus double plating in type C bicondylar tibial plateau fractures. Indian journal of orthopaedics, 49(2), 193.
[3] Liu, G. Y., Xiao, B. P., Luo, C. F., Zhuang, Y. Q., Xu, R. M., & Ma, W. H. (2016). Results of a modified posterolateral approach for the isolated posterolateral tibial plateau fracture. Indian journal of orthopaedics, 50(2), 117.
[4] Cannada, L. K., Scherping, S. C., Yoo, J. U., Jones, P. K., & Emery, S. E. (2003). Pseudoarthrosis of the cervical spine: a comparison of radiographic diagnostic measures. Spine, 28(1), 46-51.
[5] Conrad, S. H., & Kistler, W. P. (1964). U.S. Patent No. 3,151,258. Washington, DC: U.S. Patent and Trademark Office.
[6] Baumgartner, H. U., Calderara, R., Sonderegger, H. C., & Weber, P. (1988). U.S. Patent No. 4,738,146. Washington, DC: U.S. Patent and Trademark Office.
[7] Kropp, H. C. (1993). U.S. Patent No. 5,222,399. Washington, DC: U.S. Patent and Trademark Office.
[8] Kwun, H. (2000). U.S. Patent No. 6,134,947. Washington, DC: U.S. Patent and Trademark Office.
[9] 徐文祥, 王子康, 吳松岳, 孫晟軒. (2016). 感測式骨頭固定元件.ROC Patent, (104134807).
[10] 潘力誠, 陳俊良, 曾繁根, 李勝楊, 張維仁, 柳克強, 黃豪銘, 鄭光祐, 蔡春鴻. (2002). 微型直入式人工牙根穩固度感測裝置及方法. ROC Patent, (090105422).
[11] Terman, F. E. (1943). Radio engineers' handbook.

[12] Jow, U. M., & Ghovanloo, M. (2007). Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Transactions on biomedical circuits and systems, 1(3), 193-202.
[13]黃德裕(2015). Development of passive wireless sensing technology for tightness monitoring on multiple bone screw. 交通大學機械系碩士論文
[14] Armani, D., Liu, C., & Aluru, N. (1999, January). Re-configurable fluid circuits by PDMS elastomer micromachining. In Micro Electro Mechanical Systems, 1999. MEMS'99. Twelfth IEEE International Conference on (pp. 222-227). IEEE.
[‬15]‬ Wu, S. Y., & Hsu, W. (2013). Design and characterization of LC strain sensors with novel inductor for sensitivity enhancement. Smart Materials and Structures, 22(10), 105015.
[‬16]‬ Wu, S. Y., Hung, C. Y., & Hsu, W. (2014). A wirelessly readable and resettable shock recorder through the integration of LC circuits and MEMS devices. Smart Materials and Structures, 23(9), 095030.
[17] Wu, S. Y., & Hsu, W. (2014). Wireless EWOD/DEP chips powered and controlled through LC circuits and frequency modulation. Lab on a Chip, 14(16), 3101-3109.
[18] Inceoglu, S., Ferrara, L., & McLain, R. F. (2004). Pedicle screw fixation strength: pullout versus insertional torque. The spine journal, 4(5), 513-518.
[19] Jow, U. M., & Ghovanloo, M. (2007). Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Transactions on biomedical circuits and systems, 1(3), 193-202.
[20] Fuard, D., Tzvetkova-Chevolleau, T., Decossas, S., Tracqui, P., & Schiavone, P. (2008). Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectronic Engineering, 85(5), 1289-1293.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔