(3.235.11.178) 您好!臺灣時間:2021/03/07 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫銘鍵
研究生(外文):Sun, Ming-Chien
論文名稱:利用電漿放電點燃噴流擴散火焰
論文名稱(外文):Application of Plasma Discharges to the Ignition of A Jet Diffusion Flame
指導教授:廖英皓
指導教授(外文):Liao, Ying-Hao
口試委員:吳宗信陳慶耀
口試委員(外文):Wu, Jong-ShinnChen, Ching-Yao
口試日期:2017-09-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:60
中文關鍵詞:電漿輔助燃燒電漿輔助引燃電暈引燃流光引燃非預混火焰火焰引燃
外文關鍵詞:plasma-assisted combustionflame ignitioncorona ignitionstreamer ignitionjet flameplasma-assisted ignition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用非熱平衡電漿引燃噴流火焰,主要在於探討非熱平衡電漿位置對火焰引燃的難易、機率和所需引燃時間長短。同時,本文也會針對電極的結構配置與電漿之電場特性,對火焰引燃時間、引燃難易度和引燃機率,做深入的探討與比較。
本研究主要藉由兩種電極配置產生非熱平衡電漿,用以引燃火焰,電極配置分別為雙尖端電極 (Rod-Type) 和雙鎢絲電極 (Wire-Type)。研究結果發現,雙鎢絲電極能產生流光放電 (Streamer Discharge) ,成功引燃雷諾數2000 ~ 8000範圍內之非預混火焰;然而,雙尖端電極配置則無法引燃火焰。此外,本研究發現,火焰引燃的機率會隨著電漿能量密度的增加而提高,但隨著引燃位置徑向距離逐漸增加,引燃機率會逐漸降低。電漿引燃所需時間結果與引燃機率結果一致,即引燃機率高,所需之引燃時間則較短。另一方面,隨著燃料噴流雷諾數增加,火焰需要引燃的時間也增加。本研究也發現,當電漿放電足夠靠近石英燃料管,電漿電位可能極化石英管,影響火焰引燃機率與難易度。
The present study investigated the application of non-thermal plasma discharges to the ignition of a jet diffusion flame. The flame was fueled with methane and had a nominal Reynolds number of Re = 2000. The volume flow rate of co-flow air was fixed at 100 LPM. Two different configurations of electrode arrangement were tested: opposed rod electrodes with pin tips and opposed wire electrodes.
Results showed that opposed wire electrodes (made of tungsten) successfully ignited flames, but not opposed rod electrodes. It was shown that the ignition probability was increased with the energy density deposited in plasma. The ignition probability was seen to decrease, as the plasma was further away from the fuel nozzle. On the other hand, the ignition probability was increased when the discharge was close to the stoichiometric mixture fraction. However, the probability could be affected by the polarization of the fuel nozzle if the discharge was close enough to the nozzle. Results of the most probable ignition time were consistent with those of the ignition probability, i.e. the larger the ignition probability was, the shorter the ignition was.
目錄
摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
第二章 實驗方法 14
2.1 實驗配置 14
2.2 電極配置 15
2.3 實驗方法 17
第三章 結果與討論 31
3.1 不同電極配置之引燃嘗試 31
3.2 於雙尖端電極與雙鎢絲電極之火焰引燃量測點 31
3.3 探討雙尖端電極與雙鎢絲電極之OES 32
3.4 利用ICCD觀察電漿放電之氮氣化學發光 34
3.5 雙鎢絲電極火焰引燃機率結果 34
3.6 雙鎢絲電極配置引燃時間實驗結果 36
3.7 電漿於不同雷諾數的非預混火焰引燃結果 37
3.8 火焰引燃機制之探討 38
第四章 結論 56
第五章 未來建議 57
參考文獻 58
參考文獻
[1] “The Annual Energy Review 2012.” U.S. Energy Information Administration,Department of Energy, October 2012.http://www.eia.gov/aer.
[2] “BP statistical review of world energy.” British Petroleum, June 2015. http://bp.com/statisticalreview.
[3] Law, C. K., “Combustion Physics.” Cambridge University Press, 2006.
[4] Liñán, A., Vera, M., Sánchez, A. L., “Ignition, liftoff, and extinction of gaseous diffusion flames.” Annu. Rev. Fluid Mech. 2015, 47, 293-314.
[5] Ju, Y., Sun, W., “Plasma assisted combustion: Dynamics and chemistry.”Prog. Energy Combust. Sci. 2015, 48, 21-83.
[6] Hippler, R., Kersten, H., Schmidt, M., Schoenback, K. H., ”Low temperature
plasmas.” 2008, 2nd Edition, Wiley-VCH, Berlin.
[7] Starikovskiy, A., Aleksandrov, N., “Plasma-assisted ignition and combustion.”
Prog. Energy Combust. Sci. 2013, 39, 61-110.
[8] Starikovskaia, S. M., “Plasma assisted ignition and combustion.” J. Phys. D.:
Appl. Phys. 2006, 39, R265-R299.
[9] Leonov, S. B., Yarantsev, D. A., “Plasma-induced ignition and plasma-
Assisted combustion in high-speed flow.” Plasma Sources Sci. Technol.
2007, 16, 132-138.
[10] Do, H., Im, S., Cappelli, M., Mungal, M. G., “Plasma assisted flame ignition
of supersonic flows over a flat wall.” Combust. Flame 2010, 157, 2298-2305.
[11] Mariani, A., Foucher, F., “Radio frequency spark plug: an ignition system for modern internal combustion engines.” Appl. Energy 2014, 122, 151-161.19
[12] Cathey, C. D., Tang, T., Shiraishi, T., Urushihara, T., Kuthi, A., Gundersen, M. A., “Nanosecond plasma ignition for improved performance of an internal combustion engine.” IEEE Trans. Plasma Sci. 2007, 35, 1664-1668.
[13] Leonov, S. B., Yarantsev, D. A., Napartovich, A. P., Kochetov, I. V., “Plasmaassisted combustion of gaseous fuel in supersonic duct.” IEEE Trans. Plasma Sci. 2006, 34, 2514-2525.
[14] Kimura, I., Aoki, H., Kato, M., “The use of a plasma jet for flame stabilization
and promotion of combustion in supersonic air flows.” Combust. Flame 1981,42, 297-305.
[15] Starikovskiy, A., Aleksandrov, N., Rakitin, A., “Plasma-assisted ignition and
deflagration-to-detonation transition.” Phil. Trans. R. Soc. A. 2012, 370, 740-773.
[16] Lacoste, D. A., Moeck, J. P., Durox, D., Laux, C. O., Schuller, T., “Effect of
nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame.” J. Eng. Gas Turbines Power 2013, 135, 101501.
[17] Versailles, P., Chishty, W. A., Vo, H. D., “Application of dielectric barrier
discharge to improve the flashback limit of a lean premixed dump combustor.” J. Eng. Gas Turbines Power 2012, 134, 031501.
[18] Pilla, G., Galley, D., Lacoste, D. A., Lacas, F., Veynante, D., Laux, C. O.,
“Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma.” IEEE Trans. Plasma Sci. 2006, 34, 2471-2477.
[19] Cha, M. S., Lee, S. M., Kim, K. T., Chung, S. H., “Soot suppression by nonthermal plasma in coflow jet diffusion flames using a dielectric barrier discharge.” Combust. Flame 2005, 141, 438-447.
[20] Mintoussov, E., Anokhin, E., Starikovskii, A. Y., Tsyganov, D., “Plasma-assisted combustion and fuel reforming.” 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-1382.
[21] Chen, J., Davidson, J. H., “Electron density and energy distributions in the
positive DC corona: Interpretation for corona-enhanced chemical reactions.” Plasma Chem. Plasma Proc. 2002, 22, 199-224.
[22] Liu, J. B., Ronney, P. D., Gundersen, M. A., “Premixed flame ignition by
transient plasma discharges.” Proc. 3rd Joint Meeting of the US Sections of the Combustion Institute, Chicago, IL, 2003, Paper B-25.
[23] Wang, F., Liu, J. B., Sinibaldi, J., Brophy, C., Kuthi, A., Jiang, C., Ronney, P., Gundersen, M. A., “Transient plasma ignition of quiescent and flowing air/fuel mixtures.” IEEE Trans. Plasma Sci. 2005, 33, 844-849.
[24] Roy, G., Frolov, S., Netzer, D., Borisov, A., “High-speed deflagration and
detonation.” Moscow, Russia: ELEX-KM Publishers, 2001.
[25] Cathey C. D., Tang, T., Shiraishi, T., Urushihara, T., Kuthi, A., Gundersen, M. A., “Nanosecond plasma ignition for improved performance of an internal combustion engine.” IEEE Trans. Plasma Sci. 2007, 35, 1664-1668.
[26] Shiraishi, T., Urushihara, T., Gundersen, M., “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition.” J. Phys. D: Appl. Phys. 2009, 42, 135208.
[27] Esakov, I. I., Grachev, L. P., Khodataev, K. V., Vinogradov, V. A., Van Wie, D. M., “Efficiency of propane-air mixture combustion assisted by deeply undercritical MW discharge in cold high-speed airflow.” 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006.
[28] B.J. Lee,, S.H. Chung, “Determination of schmidt number of mixed fuels by the characteristics of laminar lifted jet flames. ” Science Direct. 2006,85,68-74.
[29] N. A. Popov, “Erratum: Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures” Plasma Sources Sci. Technol. 25 (2016) 049601 (1pp).2016,7,11.
電子全文 電子全文(網際網路公開日期:20220917)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔