跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康婷
研究生(外文):Kang, Ting
論文名稱:利用紫外光可交聯富勒烯衍生物改良二氧化鈦電子傳導層應用於鈣鈦礦太陽能電池
論文名稱(外文):Improving the Performance of the Perovskite Solar Cell by Using UV-Crosslinkable Fullerene Derivative to Modify Low-Temperature TiO2 Electron Transport Layer
指導教授:許千樹
指導教授(外文):Hsu, Chain-Shu
口試委員:陳方中鄭彥如陳俊太
口試委員(外文):Chen, Fang-ChungCheng, Yen-JuChen, Jiun-Tai
口試日期:2017-08-17
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:64
中文關鍵詞:鈣鈦礦太陽能電池富勒烯
外文關鍵詞:perovskitesolar cellfullerene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用紫外光可交聯富勒烯衍生物改良低溫製程以及多孔性二氧化鈦電子傳導層,並將其應用於鈣鈦礦太陽能電池中。二氧化鈦的表面存在的缺陷以及氫氧基團,是造成電子在鈣鈦礦層與電子傳導層間傳遞的主要阻礙,我們希望透過紫外光可交聯富勒烯材料[6,6]-phenyl-C61-butyric oxetane dendron ester (PCBOD)中的oxetane基團,在照光下進行開環反應後,能夠與氫氧基團鍵結,減少氫氧基所造成的電子傳輸效率低落。從SEM中,首先能夠發現鈣鈦礦在已交聯的PCBOD(C-PCBOD)表面上,有較好的結晶型態;另外由於PCBOD其中含有的富勒烯結構有良好的電子親和力,能夠幫助將電子傳導至電子傳導層中,因此在EIS的測量結果,電子傳導電阻相較於未使用C-PCBOD的元件有明顯下降,除此之外,EIS的結果也證明C-PCBOD層能夠大幅降低電荷的再結合率,減少能量經由輻射途徑耗損,另外經由TRPL中載子的生命週期減小,可推斷C-PCBOD有助於電子電洞的拆解。本研究成功的利用紫外光可交聯富勒烯衍生物改良低溫二氧化鈦電子傳導層表面,將鈣鈦礦太陽能電池效率由12.3% 提升至15.9%。接著進一步將C-PCBOD應用至多孔性二氧化鈦之鈣鈦礦太陽能電池,將太陽能轉換效率從17.18 %提升至18.11 %,證明C-PCBOD在改善電子傳輸層與鈣鈦礦層介面的廣用性。
In this research, we use low-temperature TiO2 nanoparticles doped with gold nanoparticles as electron transport layer. To passivate the inefficiency in charge transferring caused by the hydroxyl groups on the surface of TiO2, we use a UV-crosslinkable fullerene derivative [6, 6]-phenyl-C61-butyric oxetane dendron ester (PCBOD) to modify the TiO2 electron transport layer. The oxetane groups on PCBOD will anchor the hydroxyl groups on the TiO2 surface in helps of photoacid generator and also form multi-layer cross-linked PCBOD (C-PCBOD). From the results of EIS, one can be informed that the contact resistance between TiO2 and perovskite layers was decreased after the insertion of C-PCBOD. Furthermore, the recombination resistance was elevated after C-PCBOD modification. Both are evidences of how C-PCBOD increases the Jsc of a perovskite solar cell. The TRPL results also indicate that the lifetime of charge carriers became longer in the device with C-PCBOD. We successfully improve the cell performance and enhance the PCE of perovskite solar cell from 12.3% to 15.9%. We also use C-PCBOD interfacial layer to modify the perovskite solar cell based on mesoporous TiO2 electron transporting layer and get an enhanced PCE from 17.18 % to 18.11 %, proving that the C-PCBOD interfacial layer can be widely used for modifying the interface between electron transporting layer and perovskite.
摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池 1
1.3 鈣鈦礦 3
1.4 鈣鈦礦太陽能電池 5
1.5 鈣鈦礦主動層製程 7
1.6 鈣鈦礦太陽能電池結構 11
1.6.1多孔性結構與多孔性支架 12
1.6.2 平面異質結構 14
1.7 電洞傳導層 15
1.8 電子傳導層 17
1.9 富勒烯界面修飾層 19
1.10 太陽能電池工作原理 21
1.10.1 太陽能電池參數 22
1.10.2 短路電流 ( Short-circuit current, Jsc ) 23
1.10.3 開路電壓 ( Open-circuit voltage, Voc ) 24
1.10.4 填充因子(Fill Factor, FF) 25
1.10.5 能量轉換效率(Power Conversion Efficiency, PCE) 26
1.10.6 外部量子效率 (External Quantum Efficiency, EQE) 26
1.11 研究動機 27
第二章 實驗部分 29
2.1 藥品 29
2.2 P3HT: PC61BM溶液製備 29
2.3 鈣鈦礦電池元件之溶液製備 29
2.3.1 電洞傳導層 (Spiro-OMeTAD) 溶液製備 29
2.3.2 主動層 (鈣鈦礦) 前驅溶液製備 30
2.3.3 電子傳導層 (TiO2(Au)) 前驅溶液製備 30
2.4 介面修飾層 (C-PCBOD) 溶液配製 31
2.5 元件製作程序 32
2.6 量測儀器 33
2.6.1太陽光源模擬器 (AM 1.5G) 33
2.6.2 外部量子效率量測系統 (External Quantum Efficiency, EQE) 33
2.6.3場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 33
2.7.4 X射線光電子能譜分析(X-ray Photoelectron Spectroscopy, XPS) 34
2.7.5原子力顯微鏡 (Atomic Force Microscopy) 35
2.7.6 電化學交流阻抗分析 (Electrochemistry Impedance Spectroscopy, EIS) 36
2.7.7時間解析光激螢光分析 (Time-Resolved Photoluminescence,TRPL) 36
第三章 結果與討論 38
3.1 C-PCBOD介面層 38
3.1.1 X射線光電子能譜分析 (XPS) 40
3.2 C-PCBOD的表面性質 42
3.2.1 表面接觸角分析 43
3.2.2 紫外光-可見光吸收光譜 45
3.3 鈣鈦礦主動層於不同表面上的結晶形貌 46
3.3.1 掃描式電子顯微鏡 (SEM) 47
3.3.2 原子力顯微鏡 (AFM) 49
3.4 鈣鈦礦太陽能電池的效率表現 50
3.4.1 電化學交流阻抗分析(EIS) 50
3.4.2 時間解析光激螢光分析 (TRPL) 53
3.4.3太陽能轉換效率 55
3.4.4外部量子效應 (EQE) 55
3.5 C-PCBOD介面層應用於改良多孔性二氧化鈦電子傳導層之鈣鈦礦太陽能電池 58
第四章 結論 60
參考文獻 62
1. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, Energy Environ. Sci., 2014, 7, 399-407.
2. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 2013, 342, 341-344.
3. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, J. Mater. Chem. A, 2013, 1, 5628.
4. M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics, 2014, 8, 506-514.
5. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
6. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 2011, 3, 4088-4093.
7. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gra¨tzel and N.-G. Park, Sci. Rep., 2012, 2.
8. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, 2012, Science, 338, 643-646.
9. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316-319.
10. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 2014, 13, 897-903.
11. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
12. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
13. https://www.nrel.gov/pv/
14. J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510.
15. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395-398.
16. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 2014, 136, 622-625.
17. Q. Hu, J. Wu, C. Jiang, T. Liu, X. Que, R. Zhu and Q. Gong, ACS Nano, 8, 10161-10167.
18. W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao and Y. Yan, Nat. Commun., 2015, 6, 6700.
19. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Gratzel, J. Am. Chem. Soc., 2012, 134, 17396-17399.
20. Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown and R. Jose, Nano Energy, 2017, 34, 271-305.
21. S. H. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun and J. Jang, J. Mater. Chem. A, 2014, 2, 16429-16433.
22. D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, RSC Adv., 2013, 3, 18762.
23. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Adv Mater, 2013, 25, 3727-3732.
24. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, M. K. Nazeeruddin and M. Gratzel, J. Am. Chem. Soc., 2011, 133, 18042-18045.
25. F. Fabregat-Santiago, J. Bisquert, L. C. Chen, M. Wang, S. M. Zakeeruddin and M. Gra¨tzel, J. Am. Chem. Soc., 2008, 131, 558-562.
26. H. J. Snaith and M. Grätzel, Appl. Phys. Lett., 2006, 89, 262114.
27. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Science, 2016, 353, 58-62.
28. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt and E. M. Johansson, J. Phys. Chem. Lett., 2013, 4, 1532-1536.
29. Y. Zhang, W. Liu, F. Tan and Y. Gu, J. Power Sources, 2015, 274, 1224-1230.
30. S. Cho, J.-W. Jang, W. Zhang, A. Suwardi, H. Wang, D. Wang and J. L. MacManus-Driscoll, Chem. Mater., 2015, 27, 6635-6641.
31. H. A. Abbas, R. Kottokkaran, B. Ganapathy, M. Samiee, L. Zhang, A. Kitahara, M. Noack and V. L. Dalal, APL Mater., 2015, 3, 016105.
32. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas and H. J. Snaith, Nano lett., 2014, 14, 5561-5568.
33. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen and H. J. Snaith, Nano lett., 2013, 13, 3124-3128.
34. G. Yang, H. Tao, P. Qin, W. Ke and G. Fang, J. Mater. Chem. A, 2016, 4, 3970-3990.
35. M. A. Loi and J. C. Hummelen, Nat. Mater., 2013, 12, 1087-1089.
36. B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca and H. G. Boyen, APL Mater., 2014, 2, 081505.
37. Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. De Marco, P. Sun, Z. Zhao, Y.-B. Cheng and Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 11076-11083.
38. H.-L. Yip, S. K. Hau, N. S. Baek and A. K.-Y. Jen, Appl. Phys. Lett., 2008, 92.
39. S. K. Hau, H.-L. Yip, O. Acton, N. S. Baek, H. Ma and A. K.-Y. Jen, J. Mater. Chem., 2008, 18, 5113-5119.
40. K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen and H. J. Snaith, ACS Nano, 2014, 12, 12701-12709.
41. T. Ma, D. Tadaki, M. Sakuraba, S. Sato, A. Hirano-Iwata and M. Niwano, J. Mater. Chem. A, 2016, 4, 4392-4397.
42. L. Fara. Advanced Solar Cell Materials, Technology, Modeling, and Simulation
43. NREL. http://rredc.nrel.gov/solar/spectra/am1.5/
44. M. Wright and A. Uddin, Sol. Energ. Mat. Sol. Cells, 2012, 107, 87-111.
45. L. Zhu, J. Xiao, J. Shi, J. Wang, S. Lv, Y. Xu, Y. Luo, Y. Xiao, S. Wang, Q. Meng, X. Li and D. Li, Nano Research, 2014, 8, 1116-1127.
46. S. Kazim, M. K. Nazeeruddin, M. Gratzel and S. Ahmad, Angew. Chem., 2014, 53, 2812-2824.
47. Y. J. Cheng, F. Y. Cao, W. C. Lin, C. H. Chen and C. H. Hsieh, Chem. Mater., 2011, 23, 1512-1518.
48. Y. Li, Y. Zhao, Q. Chen, Y. M. Yang, Y. Liu, Z. Hong, Z. Liu, Y. T. Hsieh, L. Meng, Y. Li and Y. Yang, J. Am. Chem. Soc., 2015, 137, 15540-15547.
49. A. Kuzume, E. Herrero, J. M. Feliu, E. Ahlberg, R. J. Nichols and D. J. Schiffrin, Phys. Chem. Chem. Phys., 2005, 7, 1293.
50. F. Zhang, J. Song, M. Chen, J. Liu, Y. Hao, Y. Wang, J. Qu and P. Zeng, Phys. Chem. Chem. Phys., 2016, 18, 32903-32909.
51. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu and R. P. H. Chang, Energy Environ. Sci., 2016, 9, 3071-3078.
52. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao and J. Huang, Nat. Commun., 2015, 6, 7747.
53. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, Energy Environ. Sci., 2014, 7, 2934.
54. T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale and Y. M. Lam, J. Mater. Chem. A, 2015, 3, 8943-8969.
55. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin and E. H. Sargent, Nano lett., 2014, 14, 6281-6286.
56. M. L. Agiorgousis, Y. Y. Sun, H. Zeng and S. Zhang, J. Am. Chem. Soc., 2014, 136, 14570-14575.
57. C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang and E. W.-G. Diau, J. Mater. Chem. A, 2017, 5, 739-747.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊