跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奇隆
研究生(外文):Wu, Chi-Lung
論文名稱:藉由表面雷射捕陷形成單一巨大拓展之聚苯乙烯奈米粒子之聚集體
論文名稱(外文):A single enormously spreading assembly of polystyrene nanoparticles formed by solution surface laser trapping
指導教授:增原宏
指導教授(外文):Masuhara, Hiroshi
口試委員:增原宏陳俊太杉山輝樹柚山健一
口試委員(外文):Masuhara, HiroshiChen, Jiun-TaiSugiyama, TerukiYuyama, Ken-ichi
口試日期:2017-08-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:60
中文關鍵詞:雷射捕陷氣液界面聚苯乙烯奈米粒子
外文關鍵詞:laser trappingair/solution interfacepolystyrene nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這個研究當中, 藉由連續波近紅外雷射光照射在溶液表面, 我們示範了雷射捕陷
形成巨大的微米及奈米粒子之聚集體。 在章節三當中, 直徑 100 奈米之聚苯乙烯粒子被
用作是雷射捕陷的目標。在雷射捕陷的初始階段,粒子被聚集在雷射焦點,小的粒子聚
集體其大小與雷射焦點相同且被形成在溶液表面。 由於粒子持續不斷地被散射力吸引及
介面性質壓抑, 粒子的高濃度區域出現導致穿透式影像之穿透率下降。 在建立粒子的高
濃度區域之後,粒子聚集體開始擴張。 巨大的粒子聚集體伴隨著針狀結構形成在溶液表
面,並且暗示著光學位能變廣。為了檢驗粒子的高濃度區域扮演之角色,粒子濃度有關
於粒子聚合體形成時間。經過長時間雷射照射,歸因於雷射熱能致使粒子熔在一起,導
致不可逆粒子聚合體的形成。此不可逆粒子聚合體被定義為” 即便停止雷射照射,此粒
子聚合體還是聚在一起而非散開” 。 在章節四, 我們檢驗不可逆粒子聚合體對巨大聚合
體形成扮演之角色,於是以 10 微米之聚苯乙烯粒子取代了 不可逆粒子聚合體。有趣的
是, 單一 10 微米之聚苯乙烯粒子加上 100 奈米之聚苯乙烯粒子之雷射捕陷聚合行為與
100 奈米之聚苯乙烯粒子之雷射捕陷聚合行為相當類似。然而,在相同實驗條件下,以
雷射直接照射單一 10 微米之聚苯乙烯粒子並無不可逆粒子聚合體之形成。我們採用了
玻璃轉換溫度來詮釋為何粒子無法熔合在一起。在章節五, 我們示範以不同雷射焦點位
置之雷射捕陷聚合之微米粒子。六方最密堆積結構之粒子聚合體粒子聚合體僅在溶液表
面形成。在此溶液表面,粒子的遷移速度以粒子追蹤方法量測。相反的,在其他雷射焦
點位置,只有單一 10 微米之聚苯乙烯粒子可以被抓在焦點位置。
總結來說, 透過上述三個章節光學位能寬廣化可以被檢驗,而且可行之機制應該與
雷射捕陷誘導之長距離作用有關。
In this study, we have so far demonstrated the formation of large assembly of micron and
nanometer-sized polystyrene particle by shinning a continuous-wave near-infrared laser beam
at solution surface. In chapter 3, the pure 100 nm polystyrene particles are treated as trapping
targets. At the initial stage of trapping experiment, the particles are gathered at the focal spot
upon laser irradiation, and a small particle assembly is formed whose size is equal to focal
spot. When particles are continuously attracted to the solution surface which is due to not only
scattering force but the suppression of particle motion by interface characteristic, the highly
concentrated domain of particles emerges, resulting in transmittance decrease of transmission
images. After the establishing of concentrated domain of particles, the particle assembly
proceeds to expand. After then, the large assembly with needle structures is acquired at the
solution surface which implies that the optical potential broadening. To check how the role of
concentrated domain of 100 nm particles play, the particle concentration dependent of
assembling time is examined. Upon long term laser irradiation, the particles fused together
which is risen from laser heating, leading to the formation of irreversible assembly. The
irreversible assembly is defined as “the particles assembly remains its components instead of
dispersing away even if stopping laser trapping”. We have examined the role of irreversible
assembly acts for the formation of large assembly by replacing it with 10 μm polystyrene
particle. Interestingly, the similar assembling behavior of a single 10 μm polystyrene particle
plus 100 nm particles is repeated with pure 100 nm PS particles case. However, with the same
III
experimental condition, by irradiating the 10 μm polystyrene particle directly, there is no
irreversible assembly can be formed. We employ the glass transition temperature to interpret
why particles are not able to fuse together. In chapter 5, the laser trapping of micro particles is
demonstrated at different focal position. The hexagonal close packing structure of particle
assembly is merely formed at solution surface. Here, the speed of directional diffusion of
particles are measured by particle tracking method. On the contrary, at another focal position,
there is only single 10 μm polystyrene particle can be trapped at the focal spot.
To summarize, the broadening of optical potential is checked through these three
chapters, and the possible dynamics should be related with long-range interaction induced by
laser trapping.
中文摘要....................................................................................................................................I
Abstract......................................................................................................................................II
Acknowledgements...................................................................................................................IV
Contents....................................................................................................................................VI
List of figures..........................................................................................................................VIII
1. Introduction........................................................................................................................1
1.1. Laser trapping............................................................................................................1
1.2. Principle of laser trapping..........................................................................................1
1.3. History of laser trapping............................................................................................4
1.4. Laser trapping of nanoparticles at interface...............................................................6
1.5. Motivation of this study.............................................................................................7
2. Experimental....................................................................................................................10
2.1. Preparation of colloidal sample solution..................................................................10
2.2. Optical setup............................................................................................................11
2.3. Particle tracking method..........................................................................................13
3. Laser trapping of polystyrene nanoparticles at solution surface......................................15
3.1. Time evolution of particle assembly growth............................................................15
3.2. Time evolution of particle assembly growth with long time irradiation..................18
3.3. Irreversible assembly formation and its SEM images..............................................20
3.4. Dynamics and possible mechanism..........................................................................22
3.5. Summary..................................................................................................................26
4. Laser trapping of mixture of a single microparticle and nanoparticles of polystyrene at solution surface................................................................................................................27
4.1. Time evolution of particle assembly........................................................................27
4.2. Concentration dependence of assembly formation...................................................29
4.3. Particle dispersion and restoration controlled by tuning laser power.......................32
4.4. Dynamics and possible mechanism..........................................................................35
4.5. Summary..................................................................................................................37
5. Laser trapping of polystyrene microparticles at the interface and in solution..................39
5.1. Laser trapping of 10μm particles in H2O.................................................................39
5.1.1. Laser trapping of a single 10 μm particle at glass/solution interface...............39
5.1.2. Laser trapping of a single 10 μm particle inside solution................................40
5.1.3. Laser trapping of 10 μm particles at solution/air interface..............................42
5.2. Laser trapping of 10 μm particles in D2O................................................................44
5.2.1. Laser trapping of 10 μm particles at solution/air interface..............................45
5.2.2. Directional diffusion measurement toward a laser trapped 10 μm particle……47
5.3. Dynamics and possible mechanism…………………………………………………….……………….50
5.4. Summary………………………………………………….…………………………………….……………………52
6. Conclusion……………………………………….………………………………………………………………….………54
7. References……………………………………….………………………………………………………………………….56
8. Appendix……………………………………….………………………………………………………….…………..……59
[1]Y. Jiang, Y. Matsumoto, Y. Hosokawa, H. Masuhara and I. Oh, “Trapping and manipulation
of a single micro-object in solution with femtosecond laser induced mechanical force.” Appl.
Phys. Lett. 2007, 90, 061107.
[2] A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers.” Proc.
Natl. Acad. Sci. USA. 1997, 94, 4853–4860.
[3] A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure". Phys. Rev.
Lett. 1970, 24, 4, 156–159.
[4] A. Ashkin and J.M. Dziedzic, “Optical levitation by radiation pressure.” Appl. Phys. Lett.,
1971. 19, 8, 283-285.
[5] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu, "Observation of a single-beam
gradient force optical trap for dielectric particles." Opt. Lett. 1986, 11, 5, 288–290.
[6] S. Chu, J.E. Bjorkholm, A. Ashkin, J.P. Gordon and L.W. Hollberg, “Proposal for
Optically Cooling Atoms to Temperatures of the Order of 10-6 K.” Opt. Lett, 1986. 11, 2,
73-75.
[7] A. Ashkin and J.M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria."
Science. 1987, 235, 4795, 1517–1520.
[8] P. Borowicz, J. Hotta, K. Sasaki and H. Masuhara, “Chemical and Optical Mechanism of
Microparticle Formation of Poly(N-vinylcarbazole) in N,N-Dimethylformamide by Photon
Pressure of a Focused Near-Infrared Laser Beam.” J. Phys. Chem. B. 1998, 102, 11, 1896–
1901.
[9] K. Sasaki, M. Tsukima and H. Masuhara, “Three-dimensional potential analysis of
radiation pressure exerted on a single microparticle.” Appl. Phys. Lett. 1997. 71, 1, 37.
[10] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, “Laser-Scanning
Micromanipulation and Spatial Patterning of Fine Particles,” Jpn. J. Appl. Phys. 1991, 30,
L907.
[11] E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and
light radiation." Phys. Rev. 1901, 13, 307.
[12] E. F. Nichols and G. F. Hull, "The Pressure Due to Radiation." Phys. Rev. 1903, 17, 26.
[13] K. Yuyama, T. Sugiyama and H. Masuhara, “Millimeter-scale dense liquid droplet
formation and crystallization in glycine solution induced by photon pressure.” J. Phys. Chem.
Lett. 2010, 1, 9, 1321-1325.
[14] T. Sugiyama, T. Adachi and H. Masuhara, “Crystallization of Glycine by Photon Pressure
of a Focused CW Laser Beam.” Chem. Lett. 2007, 36, 12, 1480-1481.
[15] T. Sugiyama, T. Adachi and H. Masuhara, "Crystal growth of glycine controlled by a
focused CW near-infrared laser beam." Chem. Lett. 2009, 5, 482-483.
[16] T. Rungsimanon, K. Yuyama, T. Sugiyama and H. Masuhara, "Crystallization in
unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near
57
infrared laser." Crystal Growth Des. 2010, 10, 4686-4688.
[17] H. Masuhara, T. Sugiyama, T. Rungsimanon, K. Yuyama, A. Miura, and J.R. Tu,
"Laser-trapping assembling dynamics of molecules and proteins at surface and interface."
Pure Appl. Chem. 2011, 83, 869-883.
[18] S. Masuo, H. Yoshikawa, T. Asahi, H. Masuhara, T. Sato, D.L. Jiang, and T. Aida,
“ Repetitive contraction and swelling behavior of gel-like wire-type dendrimer assemblies in
solution layer by photon pressure of a focused near-infrared laser beam.” J. Phys. Chem. B.
2002, 106, 5, 905-909.
[19] Y. Tsuboi, T. Shoji and N. Kitamura, “Optical Trapping of Amino Acids in Aqueous
Solutions.” J. Phys. Chem. C 2010, 114, 5589-5593.
[20] T. Shoji, N. Kitamura and Y. Tsuboi, “Resonant Excitation Effect on Optical Trapping of
Myoglobin: The Important Role of a Home Cofactor.” J. Phys. Chem. C 2013, 117,
10691-10697.
[21] K. Yuyama, T. Rungsimanon, T. Sugiyama and H. Masuhara, "Selective Fabrication of α-
and γ-Polymorphs of Glycine by Intense Polarized Continuous Wave Laser Beams." Cryst.
Growth Des. 2012, 12, 2427-2434.
[22] K. Yuyama, T. Sugiyama and H. Masuhara, "Laser trapping dynamics of 200
nm-polystyrene particles at a solution surface," Proc. SPIE. 2013, 8810, 88101V, 1-7.
[23] S.F. Wang, K. Yuyama, T. Sugiyama and H. Masuhara, "Laser trapping and assembling of
nanoparticles at solution surface studied by reflection micro-spectroscopy." Proc. SPIE. 2015,
9548, 954821-1-954821-6.
[24] S.F. Wang, K. Yuyama, T. Sugiyama and H. Masuhara, "Reflection Microspectroscopic
Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface."
J. Phys. Chem. C. 2015, 120, 29, 15578-15585.
[25] T. Kudo, S.F. Wang, K. Yuyama and H. Masuhara, "Light propagation in optical trapping
assembling of colloidal particles at an interface." Proceedings of SPIE. 2016, 9922, 99221R.
[26] S.F. Wang, T. Kudo, K. Yuyama, T. Sugiyama, and H. Masuhara, "Optically evolved
assembly formation in laser trapping of polystyrene nanoparticles at solution surface."
Langmuir. 2016, 32, 12488-12496.
[27] T. Kudo, S.F. Wang, K. Yuyama and H. Masuhara, "Optical trapping-formed colloidal
assembly with horns extended to the outside of a focus through light propagation." Nano Lett.
2016, 16, 5, 3058-3062.
[28] Á. G. Marín and D. Lohse, “Building water bridges in air: Electrohydrodynamics of the
floating water bridge.” Physics of fluids. 2010, 22, 122104.
[29] C. Zhang, Y. Guo, and R. D. Priestley, “Glass Transition Temperature of Polymer
Nanoparticles under Soft and Hard Confinement.” Macromolecules, 2011, 44, 10, 4001-4006.
[30] T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine
waters: spatial and temporal variation of light intensity, degree of polarization and e-vector
angle.” Journal of Experimental Biology 2001 204: 2461-2467.
58
[31] S. Ito, T. Sugiyama, N. Toitani, G. Katayama, and H. Miyasaka, “Application of
Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature in
Solutions under Optical Trapping Condition,” J. Phys. Chem. B. 2007, 111, 9, 2365-2371.
[32] J. B. Young, “Thermophoresis of a spherical particle: Reassessment, carination,
and new analysis.” Aerosol Science and Technology, 2011, 45, 8, 927-948.
[33] Baglay RR, Roth CB,” Local glass transition temperature Tg(z) of polystyrene next to
different polymers: Hard vs. soft confinement,” J Chem Phys. 2017, 146, 20, 203307.
[34] J. Leng, Z. Guo, H. Zhang, T. Chang, X. Guo,and H. Gao,” Negative Thermophoresis in
Concentric Carbon Nanotube Nanodevices.” Nano Lett. 2016, 16, 10, 6396-6402.
[35] B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive
thermal forces on microcantilevers.” Citation: Appl. Phys. Lett. 2005, 87, 194102.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top