|
[1]Y. Jiang, Y. Matsumoto, Y. Hosokawa, H. Masuhara and I. Oh, “Trapping and manipulation of a single micro-object in solution with femtosecond laser induced mechanical force.” Appl. Phys. Lett. 2007, 90, 061107. [2] A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers.” Proc. Natl. Acad. Sci. USA. 1997, 94, 4853–4860. [3] A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure". Phys. Rev. Lett. 1970, 24, 4, 156–159. [4] A. Ashkin and J.M. Dziedzic, “Optical levitation by radiation pressure.” Appl. Phys. Lett., 1971. 19, 8, 283-285. [5] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles." Opt. Lett. 1986, 11, 5, 288–290. [6] S. Chu, J.E. Bjorkholm, A. Ashkin, J.P. Gordon and L.W. Hollberg, “Proposal for Optically Cooling Atoms to Temperatures of the Order of 10-6 K.” Opt. Lett, 1986. 11, 2, 73-75. [7] A. Ashkin and J.M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria." Science. 1987, 235, 4795, 1517–1520. [8] P. Borowicz, J. Hotta, K. Sasaki and H. Masuhara, “Chemical and Optical Mechanism of Microparticle Formation of Poly(N-vinylcarbazole) in N,N-Dimethylformamide by Photon Pressure of a Focused Near-Infrared Laser Beam.” J. Phys. Chem. B. 1998, 102, 11, 1896– 1901. [9] K. Sasaki, M. Tsukima and H. Masuhara, “Three-dimensional potential analysis of radiation pressure exerted on a single microparticle.” Appl. Phys. Lett. 1997. 71, 1, 37. [10] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, “Laser-Scanning Micromanipulation and Spatial Patterning of Fine Particles,” Jpn. J. Appl. Phys. 1991, 30, L907. [11] E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation." Phys. Rev. 1901, 13, 307. [12] E. F. Nichols and G. F. Hull, "The Pressure Due to Radiation." Phys. Rev. 1903, 17, 26. [13] K. Yuyama, T. Sugiyama and H. Masuhara, “Millimeter-scale dense liquid droplet formation and crystallization in glycine solution induced by photon pressure.” J. Phys. Chem. Lett. 2010, 1, 9, 1321-1325. [14] T. Sugiyama, T. Adachi and H. Masuhara, “Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam.” Chem. Lett. 2007, 36, 12, 1480-1481. [15] T. Sugiyama, T. Adachi and H. Masuhara, "Crystal growth of glycine controlled by a focused CW near-infrared laser beam." Chem. Lett. 2009, 5, 482-483. [16] T. Rungsimanon, K. Yuyama, T. Sugiyama and H. Masuhara, "Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near 57 infrared laser." Crystal Growth Des. 2010, 10, 4686-4688. [17] H. Masuhara, T. Sugiyama, T. Rungsimanon, K. Yuyama, A. Miura, and J.R. Tu, "Laser-trapping assembling dynamics of molecules and proteins at surface and interface." Pure Appl. Chem. 2011, 83, 869-883. [18] S. Masuo, H. Yoshikawa, T. Asahi, H. Masuhara, T. Sato, D.L. Jiang, and T. Aida, “ Repetitive contraction and swelling behavior of gel-like wire-type dendrimer assemblies in solution layer by photon pressure of a focused near-infrared laser beam.” J. Phys. Chem. B. 2002, 106, 5, 905-909. [19] Y. Tsuboi, T. Shoji and N. Kitamura, “Optical Trapping of Amino Acids in Aqueous Solutions.” J. Phys. Chem. C 2010, 114, 5589-5593. [20] T. Shoji, N. Kitamura and Y. Tsuboi, “Resonant Excitation Effect on Optical Trapping of Myoglobin: The Important Role of a Home Cofactor.” J. Phys. Chem. C 2013, 117, 10691-10697. [21] K. Yuyama, T. Rungsimanon, T. Sugiyama and H. Masuhara, "Selective Fabrication of α- and γ-Polymorphs of Glycine by Intense Polarized Continuous Wave Laser Beams." Cryst. Growth Des. 2012, 12, 2427-2434. [22] K. Yuyama, T. Sugiyama and H. Masuhara, "Laser trapping dynamics of 200 nm-polystyrene particles at a solution surface," Proc. SPIE. 2013, 8810, 88101V, 1-7. [23] S.F. Wang, K. Yuyama, T. Sugiyama and H. Masuhara, "Laser trapping and assembling of nanoparticles at solution surface studied by reflection micro-spectroscopy." Proc. SPIE. 2015, 9548, 954821-1-954821-6. [24] S.F. Wang, K. Yuyama, T. Sugiyama and H. Masuhara, "Reflection Microspectroscopic Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface." J. Phys. Chem. C. 2015, 120, 29, 15578-15585. [25] T. Kudo, S.F. Wang, K. Yuyama and H. Masuhara, "Light propagation in optical trapping assembling of colloidal particles at an interface." Proceedings of SPIE. 2016, 9922, 99221R. [26] S.F. Wang, T. Kudo, K. Yuyama, T. Sugiyama, and H. Masuhara, "Optically evolved assembly formation in laser trapping of polystyrene nanoparticles at solution surface." Langmuir. 2016, 32, 12488-12496. [27] T. Kudo, S.F. Wang, K. Yuyama and H. Masuhara, "Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation." Nano Lett. 2016, 16, 5, 3058-3062. [28] Á. G. Marín and D. Lohse, “Building water bridges in air: Electrohydrodynamics of the floating water bridge.” Physics of fluids. 2010, 22, 122104. [29] C. Zhang, Y. Guo, and R. D. Priestley, “Glass Transition Temperature of Polymer Nanoparticles under Soft and Hard Confinement.” Macromolecules, 2011, 44, 10, 4001-4006. [30] T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle.” Journal of Experimental Biology 2001 204: 2461-2467. 58 [31] S. Ito, T. Sugiyama, N. Toitani, G. Katayama, and H. Miyasaka, “Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature in Solutions under Optical Trapping Condition,” J. Phys. Chem. B. 2007, 111, 9, 2365-2371. [32] J. B. Young, “Thermophoresis of a spherical particle: Reassessment, carination, and new analysis.” Aerosol Science and Technology, 2011, 45, 8, 927-948. [33] Baglay RR, Roth CB,” Local glass transition temperature Tg(z) of polystyrene next to different polymers: Hard vs. soft confinement,” J Chem Phys. 2017, 146, 20, 203307. [34] J. Leng, Z. Guo, H. Zhang, T. Chang, X. Guo,and H. Gao,” Negative Thermophoresis in Concentric Carbon Nanotube Nanodevices.” Nano Lett. 2016, 16, 10, 6396-6402. [35] B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers.” Citation: Appl. Phys. Lett. 2005, 87, 194102.
|