(3.235.108.188) 您好!臺灣時間:2021/02/25 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江威逸
研究生(外文):Chiang, Wei-Yi
論文名稱:奈米材料在區域光場下的動力學與操控
論文名稱(外文):Nanoscale Material Dynamics and Manipulation under Confined Optical Field
指導教授:增原宏李遠鵬李遠鵬引用關係
指導教授(外文):Masuhara, HiroshiLee, Yuan-Pern
口試委員:杉山輝樹許馨云寺西慶哲
口試委員(外文):Sugiyama, TerukiHsu, Hsin-YunTeranishi, Yoshiaki
口試日期:2017-11-21
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:138
中文關鍵詞:雷射顯微鏡
外文關鍵詞:LaserMicroscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究了雷射照射奈米材料所產生的動力學和操控現象,並探討、解釋和總結新的雷射捕捉現象和所伴隨的分子重排及沈積現象。

我們通過連續波雷射捕捉單一雙極性向列型液晶微滴證明了重新排序的可能。當雷射功率高於某一閾值時,液晶分子會在焦點處被重新排列,並從焦點區域傳播到液滴表面。在觀測重新排列動態時發現閾值功率取決於液滴大小和雷射偏振型式。這些結果可用夫瑞德利克兹轉換(Fréedericksz transition)來解釋。

關於奈米尺度的操控上,我們研究了金屬在石墨烯上的沉積和式樣化。通過雷射光激發單層石墨烯表面所產生的高能電子來還原金屬離子。金屬奈米粒子會成核並被固定在雷射照射的單層石墨烯位置上。這些金奈米粒子被聚集在石墨烯上並進行沉積和式樣化。這種沉積方式所製造的奈米結構可應用在元件上並取代傳統半導體元件製造製程中的光刻步驟。

通過飛秒雷射的瞬時力(temporal force)、峰值功率和非線性光學效應,我們探討新的雷射捕捉現象。在介電奈米粒子的溶液中,我們發現奈米粒子會以垂直雷射偏振的方向交替噴射。這種現象從未在連續波雷射捕捉中被觀察到,我們也實驗測試了不同雷射參數、不同介電奈米粒子和表面化學修飾的奈米粒子來瞭解這種新的雷射捕捉和噴射現象。

我們從理論上來解釋飛秒雷射捕捉聚苯乙烯奈米粒子所產生的捕捉和定向噴射現象,同時也對雷射脈衝寬度、極化和重複率的變化進行了實驗檢驗。我們提出定向噴射的原因在於焦點處形成奈米粒子的暫態聚集。考慮三維的光學力場,交替噴射的原因為對稱電場和非對稱暫態聚集之間的相互作用產生的不對稱力。這結果提供了聚焦脈衝雷射對雷利粒子的動態光學捕捉的重要實驗數據。

我們也試驗了飛秒雷射捕捉二氧化矽奈米粒子,但卻沒有觀察到噴射現象。由於粒子間相互作用較弱,我們在其表面上修飾了烷基矽烷來改變二氧化矽奈米粒子的表面特性。我們可在所製備的疏水性二氧化矽奈米粒子中觀察到噴射行為。通過增加表面修飾的厚度,我們成功地直接觀測到了奈米粒子的單一暫態聚集體,並分析了其形成和衰變動力學。我們用苝苯亞醯胺衍生物螢光分子修飾在二氧化矽奈米粒子表面來做分子層面對暫態聚集的研究。在捕捉螢光粒子時會測到聚集體的螢生光譜訊號,這顯示奈米粒子在雷射焦點處會形成高緊密度的聚集體。

脈衝雷射捕捉和操控可用在研究奈米級的粒子上。脈衝雷射取代傳統的連續波雷射可產生非線性光學效應來提高光學捕捉效率。我們利用2.7奈米的碲化鎘量子點的雙光子吸收來產生非線性光學效應。通過探測雷利散射和雙光子發光的光強度變化來研究捕捉行為。雷利散射影像顯示雙光子吸收提高了量子點的捕捉效率,而雙光子誘發的發光與入射激光強度的非線性增加也證實了雙光子吸收過程的存在。
In this thesis, dynamics and manipulation of nanoscale materials induced by laser irradiation are studied. New laser trapping phenomena and accompanying molecular reordering and deposition phenomena are explored, interpreted and summarized.

We experimentally demonstrated reordering throughout an individual bipolar nematic liquid crystal microdroplet trapped by a continuous-wave (cw) laser. When the laser power is above a certain threshold, molecular reorientation is induced at the focus and propagates from the focal area to the droplet surface. We sequentially monitored the reordering dynamics of liquid crystal microdroplet and found that the threshold power is dependent on the droplet size and laser polarization. These results are explained based on the finite size approximation.

Concerning nanoscale manipulation, we demonstrated deposition and patterning of metal on graphene. Through reduction of metal ions by photo-generated high energy electrons from single graphene layer, the nucleation of gold metal nanoparticles is induced while they are immobilized at the irradiated position of a single layer of graphene. Collecting these gold nanoparticles, the deposition and patterning on graphene proceeded. The applications of such deposited nanostructures toward devices are demonstrated to be comparable to those of the conventional lithography method.

Based on temporal force, impulsive peak power and nonlinear optical effect, we explored new trapping phenomena by using a femtosecond (fs) laser. In solutions containing dielectric nanoparticles, we found alternatively switched ejection of nanoparticles perpendicular to laser polarization. This observation has never been realized in cw laser trapping, and all laser parameters as well as different dielectric nanoparticles and chemically modified nanoparticle surfaces were examined to unravel the trapping and ejection behavior.

We considered theoretically the trapping and directional ejection by fs laser trapping of polystyrene nanoparticles. Their dependences on laser pulse width, polarization and repetition rate were also experimentally examined. We proposed that the directional ejection could be attributed to the formation of a transient assembly of nanoparticles at the focal spot. Being associated with three-dimensional optical force, the alternative directional ejection was attributed to the asymmetric force generated by interaction between the symmetric electric field and asymmetric assembly. This provides important information about the dynamic optical trapping of Rayleigh particles by highly focused ultrashort laser pulses.

Silica nanoparticles were also examined under fs laser trapping, but no ejection was observed. As the interparticle interaction is weak, we modified the surface of silica nanoparticles by coating alkyl silane on their surface. Then, the ejection behavior was observed for the prepared hydrophobic silica nanoparticles. Through increasing the thickness of the coated layer, we succeeded in directly detecting a single transient assembly of the modified nanoparticles and we analyzed its formation and decay dynamics. For molecular level understanding of the assembly formation, the silica nanoparticles were coated with fluorescent perylene diimide (PDI) derivatives. During trapping of the latter nanoparticles, aggregate emission of PDI was sometimes observed, which suggests that the strong packing of the nanoparticles is realized at the focal spot.

The developments in pulsed laser trapping and manipulation allowed one to study the particles at the nanometer scale. Nonlinear optical effect are considered to increase the optical trapping efficiency. Substituting the conventional cw lasers with a pulsed laser of high repetition rate, we evaluated two-photon absorption (TPA) in optical trapping of CdTe quantum dots (QDs) with a size of 2.7 nm. We studied the trapping behavior by probing the dependence on laser intensity using both Rayleigh scattering and two-photon induced luminescence. Rayleigh scattering imaging indicates that the TPA process enhances trapping efficiency of the QDs, while a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity also confirms the existence of the TPA process.
摘要 i
Abstract iii
Acknowledgement vi
Table of contents viii
List of figures x
Symbols xx
Chapter 1 1
General introduction 1
References 9
Chapter 2 13
Reconfiguration dynamics in individual liquid crystal microdroplets by cw laser irradiation 13
2.1 Introduction 13
2.2 Experimental 15
2.3 Laser polarization dependence of reconfiguration behavior 16
2.4 Threshold consideration of reconfiguration behavior 18
2.5 Conclusion 22
2.6 References 23
Chapter 3 27
Deposition and patterning of metal nanoparticles on graphene by cw laser irradiation 27
3.1 Introduction 27
3.2 Experimental 29
3.3 Deposition of gold nanostructure on graphene 31
3.3.1 Nucleation process of gold metal nanoparticle 32
3.3.2 Growth process of gold metal nanoparticle 36
3.4 Deposition of several metal nanostructures on graphene 39
3.5 Device application of metal nanostructures on graphene 41
3.6 Conclusion 45
3.7 References 45
Chapter 4 49
Femtosecond laser trapping dynamics of dielectric nanoparticles 49
4.1 Introduction 49
4.2 Experimental 51
4.3 Femtosecond laser trapping of polystyrene nanoparticles inducing their directional ejection 52
4.3.1 Femtosecond trapping and ejection behavior of polystyrene nanoparticles 52
4.3.2 Laser polarization dependence of directional ejection of polystyrene nanoparticles 56
4.4 Theoretical consideration on femtosecond laser trapping of nanoparticles 58
4.4.1 Mechanism of directional ejection. 58
4.4.2 Optical trapping with ultrashort laser pulses 60
4.4.3 Force maps 60
4.5 Mechanism of femtosecond laser trapping and ejection of polystyrene nanoparticles 61
4.5.1 Pulse width dependence 62
4.5.2 Repetition rate dependence 65
4.5.3 Particle density dependence 67
4.5.4 Solvent viscosity dependence 69
4.6 Femtosecond laser trapping of silica nanoparticles inducing their directional ejection 75
4.6.1 Preparation of silane-coated silica nanoparticles 75
4.6.2 Trapping and directional ejection of bare and silane-coated silica nanoparticles 77
4.6.3 Trapping and directional ejection dynamics of silane-coated silica nanoparticles with different thickness 81
4.6.4 Direct observation of a transient assembly of silane-coated silica nanoparticles 84
4.6.5 Formation and dissociation dynamics of a transient assembly and its asymmetric structure 87
4.6.6 Preparation and fs laser trapping dynamics of dye-coated silica nanoparticles 90
4.7 Conclusion 97
4.8 References 99
Chapter 5 105
Femtosecond laser trapping dynamics of quantum dots 105
5.1 Introduction 105
5.2 Experimental 108
5.3 Rayleigh scattering analysis of trapping behavior 111
5.4 Two-photon fluorescence analysis of trapping behavior 113
5.5 Conclusion 118
5.6 References 118
Chapter 6 125
General conclusion and future outlook 125
References 129
Appendix 133
1. Lebedev, P. N. Experimental Examination of Light Pressure. Ann. Phys. 6, 1–26 (1901).
2. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970).
3. Ashkin, A. & Dziedzic, J. M. Optical Levitation in High Vacuum. Appl. Phys. Lett. 28, 333–335 (1976).
4. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).
5. Grier, D. G. A Revolution in Optical Manipulation. Nature 424, 810–816 (2003).
6. Ashkin, A. & Fellow, L. History of Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules. IEEE J. Quantum Electron. 6, 841–856 (2000).
7. Molloy, J. E. & Padgett, M. J. Lights, Action: Optical Tweezers. Contemp. Phys. 43, 241–258 (2002).
8. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N-isopropylacrylamide) in Aqueous Solution. Langmuir 13, 414–419 (1997).
9. Hofkens, J. et al. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene-Labeled PNIPAM. J. Am. Chem. Soc. 119, 2741–2742 (1997).
10. Nabetani, Y., Yoshikawa, H., Grimsdale, A. C., Müllen, K. & Masuhara, H. Effects of Optical Trapping and Liquid Surface Deformation on the Laser Microdeposition of a Polymer Assembly in Solution. Langmuir 23, 6725–6729 (2007).
11. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011).
12. Adachi, H. et al. Laser Irradiated Growth of Protein Crystal. Jpn. J. Appl. Phys. 42, L798–L800 (2003).
13. Sugiyama, T. & Masuhara, H. Laser-Induced Crystallization and Crystal Growth. Chem. - An Asian J. 6, 2878–2889 (2011).
14. Sugiyama, T., Yuyama, K.-I. & Masuhara, H. Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Acc. Chem. Res. 45, 1946–1954 (2012).
15. Sugiyama, T., Adachi, T. & Masuhara, H. Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chem. Lett. 36, 1480–1481 (2007).
16. Rungsimanon, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Cryst. Growth Des. 10, 4686–4688 (2010).
17. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589–5593 (2010).
18. Tu, J.-R., Yuyama, K., Masuhara, H. & Sugiyama, T. Dynamics and Mechanism of Laser Trapping-Induced Crystal Growth of Hen Egg White Lysozyme. Cryst. Growth Des. 15, 4760–4767 (2015).
19. Kudo, T., Wang, S.-F., Yuyama, K. & Masuhara, H. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation. Nano Lett. 16, 3058–3062 (2016).
20. Wang, S.-F., Kudo, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface. Langmuir 32, 12488–12496 (2016).
21. Wang, S.-F., Yuyama, K., Sugiyama, T. & Masuhara, H. Reflection Microspectroscopic Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface. J. Phys. Chem. C 120, 15578–15585 (2016).
22. Masuhara, H., Sugiyama, T., Yuyama, K. & Usman, A. Optical Trapping Assembling of Clusters and Nanoparticles in Solution by CW and Femtosecond Lasers. Opt. Rev. 22, 143–148 (2015).
23. Hotta, J., Sasaki, K. & Masuhara, H. A Single Droplet Formation from Swelled Micelles by Radiation Pressure of a Focused Infrared Laser Beam. J. Am. Chem. Soc. 118, 11968–11969 (1996).
24. Ito, S., Yoshikawa, H. & Masuhara, H. Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature. Appl. Phys. Lett. 80, 482–484 (2002).
25. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Optical Assembling Dynamics of Individual Polymer Nanospheres Investigated by Single-Particle Fluorescence Detection. Phys. Rev. E 70, 61410 (2004).
26. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Cluster Formation of Nanoparticles in an Optical Trap Studied by Fluorescence Correlation Spectroscopy. Phys. Rev. E 72, 21408 (2005).
27. Khoo, I.-C., Park, J.-H. & Liou, J. D. Theory and Experimental Studies of All-Optical Transmission Switching in a Twist-Alignment Dye-Doped Nematic Liquid Crystal. J. Opt. Soc. Am. B 25, 1931 (2008).
28. Smalyukh, I. I., Kaputa, D. S., Kachynski, A.V., Kuzmin, A. N. & Prasad, P. N. Optical Trapping of Director Structures and Defects in Liquid Crystals Using Laser Tweezers. Opt. Express 15, 4359 (2007).
29. Brasselet, E. & Juodkazis, S. Optical Angular Manipulation of Liquid Crystal Droplets in Laser Tweezers. J. Nonlinear Opt. Phys. Mater. 18, 167–194 (2009).
30. Murazawa, N., Juodkazis, S., Matsuo, S. & Misawa, H. Control of the Molecular Alignment Inside Liquid- Crystal Droplets by Use of Laser Tweezers. Small 1, 656–661 (2005).
31. Juodkazis, S., Matsuo, S., Murazawa, N., Hasegawa, I. & Misawa, H. High-Efficiency Optical Transfer of Torque to a Nematic Liquid Crystal Droplet. Appl. Phys. Lett. 82, 4657–4659 (2003).
32. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse-Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182–19188 (2013).
33. Wang, L.-G. & Zhao, C.-L. Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on a Rayleigh Dielectric Sphere. Opt. Express 15, 10615–10621 (2007).
34. Kittiravechote, A., Chiang, W.-Y., Usman, A., Liau, I. & Masuhara, H. Enhanced Optical Confinement of Dye-Doped Dielectric Nanoparticles Using a Picosecond-Pulsed Near-Infrared Laser. Laser Phys. Lett. 11, 76001 (2014).
35. Kittiravechote, A., Usman, A., Masuhara, H. & Liau, I. Enhanced optical confinement of dielectric nanoparticles by two-photon resonance transition. RSC Adv. 7, 42606–42613 (2017).
36. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Enhancement of Biased Diffusion of Dye-Doped Nanoparticles by Simultaneous Irradiation with Resonance and Nonresonance Laser Beams. Jpn. J. Appl. Phys. 45, L453–L456 (2006).
37. Min, C. et al. Focused Plasmonic Trapping of Metallic Particles. Nat. Commun. 4, 2891 (2013).
38. Punj, D. et al. A Plasmonic “Antenna-In-Box” Platform for Enhanced Single-Molecule Analysis at Micromolar Concentrations. Nat. Nanotechnol. 8, 512–516 (2013).
39. Shao, L., Yang, Z.-J., Andrén, D., Johansson, P. & Käll, M. Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. ACS Nano 9, 12542–12551 (2015).
40. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156−159 (1970).
41. Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. U.S.A. 94, 4853−4860 (1997).
42. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 11, 288−290 (1986).
43. Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N. & Masuhara, H. Laser-Scanning Micromanipulation and Spatial Patterning of Fine Particles. Jpn. J. Appl. Phys. 30, L907−L909 (1991).
44. Urban, A. S., Lutich, A. A., Stefani, F. D. & Feldmann, Laser Printing Single Gold Nanoparticles. J. Nano Lett. 10, 4794−4798 (2010).
45. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787− 2809 (2004).
46. Bartlett, P. & Henderson, S. Three-Dimensional Force Calibration of a Single-Beam Optical Gradient Trap. J. Phys.: Condens. Matter 14, 7757−7768 (2002).
47. Ito, S., Tanaka, Y., Yoshikawa, H., Ishibashi, Y., Miyasaka, H. & Masuhara, H. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 113, 14472−14475 (2011).
48. Sugiyama, T., Adachi, T. & Masuhara, H. Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chem. Lett. 36, 1480−1481 (2007).
49. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589−5593 (2010).
50. Masuhara, H., Sugiyama, T., Rungsimanon, T., Yuyama, K., Miura, A. & Tu, J.-R. Laser-Trapping Assembling Dynamics of Molecules and Proteins at Surface and Interface. Pure Appl. Chem. 83, 869−883 (2011).
51. Rungsimanon, T., Yuyama, K., Sugiyama, T., Masuhara, H., Tohnai, N. & Miyata, M. Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. J. Phys. Chem. Lett. 1, 599−603 (2010).
52. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A: Chemistry 221, 187−193 (2011).
53. Sun, X., Garetz, B. A., Moreira, M. F. & Palffy-Muhoray, P. Nonphotochemical Laser-Induced Nucleation of Nematic Phase and Alignment of Nematic Director from a Supercooled Thermotropic Liquid Crystal. Phys. Rev. E 79, 021701 (2009).
54. Usman, A., Uwada, T. & Masuhara, H. Optical Reorientation and Trapping of Nematic Liquid Crystals Leading to the Formation of Micrometer-Sized Domain. J. Phys. Chem. C 115, 11906−11913 (2011).
55. Erdmann, J. H., Žumer, S. & Doane, J. W. Configuration Transition in a Nematic Liquid Crystal Confined to a Small Spherical Cavity. Phys. Rev. Lett. 64, 1907−1910 (1990).
56. Doane, J. W., Vaz, N. A., Wu, B.-G. & Žumer, S. Field Controlled Light Scattering from Nematic Microdroplets. Appl. Phys. Lett. 48, 269−271 (1986).
57. Amundson, K. Electro-Optic Properties of a Polymer-Dispersed Liquid-Crystal Film: Temperature Dependence and Phase Behavior. Phys. Rev. E 53, 2412−2422 (1996).
58. Khoo, I. C., Liu, T. H. & Yan, P. Y. Nonlocal Radial Dependence of Laser-Induced Molecular Reorientation in a Nematic Liquid Crystal: Theory and Experiment. J. Opt. Soc. Am. B 4, 115−120 (1987).
59. Zolot́ko, A. S., Kitieva, V. F., Kuyumchyan, V. A., Sobolev, N. N. & Sukhorukov, A. P. Light-Induced Second-Order Phase Transition in a Spatially Bounded Region of a Nematic Liquid Crystal. JETP Lett. 36,80−84 (1982).
60. Brasselet, E., Lherbier, A. & Dubé, L.J. Transverse Nonlocal Effects in Optical Reorientation of Nematic Liquid Crystals. J. Opt. Soc. Am. B 23,36−44 (2006).
61. Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S. & Misawa, H. Fast Optical Switching by a Laser-Manipulated Microdroplet of Liquid Crystal. Appl. Phys. Lett. 74, 3627−3629 (1999).
62. Juodkazis, S., Matsuo, S., Murazawa, N., Hasegawa, I. & Misawa, H. High-Efficiency Optical Transfer of Torque to a Nematic Liquid Crystal Droplet. Appl. Phys. Lett. 82, 4657−4659 (2003).
63. Wood, T. A., Gleeson, H. F., Dickinson, M. R. & Wright, A. J. Mechanisms of Optical Angular Momentum Transfer to Nematic Liquid Crystalline Droplets. Appl. Phys. Lett. 84, 4292−4294 (2004).
64. Gleeson, H. F., Wood, T. A. & Dickinson, M. Laser Manipulation in Liquid Crystals: An Approach to Microfluidics and Micromachines. Philos. Trans. R. Soc. London, Ser. A 364, 2789−2805 (2006).
65. Yang, Y., Brimicombe, P. D., Roberts, N. W., Dickinson, M. R., Osipov, M. & Gleeson, H. F. Continuously Rotating Chiral Liquid Crystal Droplets in a Linearly Polarized Laser Trap. Opt. Express 16, 6877−6882 (2008).
66. Brasselet, E., Murazawa, N., Juodkazis, S. & Misawa, H. Statics and Dynamics of Radial Nematic Liquid-Crystal Droplets Manipulated by Laser Tweezers. Phys. Rev. E 77, 041704 (2008).
67. Brasselet, E. & Juodkazis, S. Optical Angular Manipulation of Liquid Crystal Droplets in Laser Tweezers. J. Nonlinear Opt. Phys. Mater. 18, 167−194 (2009).
68. Juodkazis, S., Mukai, N., Wakaki, R., Yamaguchi, A., Matsuo, S. & Misawa, H. Reversible Phase Transitions in Polymer Gels Induced by Radiation Forces. Nature 408, 178−181 (2000).
69. Ito, S., Sugiyama, T., Toitani, N., Katayama, G. & Miyasaka, H. Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature in Solutions under Optical Trapping Condition. J. Phys. Chem. B 111, 2365−2371 (2007).
70. Durbin, S. D., Arakelian, S. M. & Shen, Y. R. Laser-Induced Diffraction Rings from a Nematic-Liquid-Crystal Film. Opt. Lett. 6, 411−1414 (1981).
71. Khoo, I. C., Hou, J. Y., Liu, T. H., Yan, P. Y., Michael, R. R. & Finn, G. M. Transverse Self-Phase Modulation and Bistability in the Transmission of a Laser Beam Through a Nonlinear Thin Film. J. Opt. Soc. Am. B 4, 886−891 (1987).
72. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals, 2nd ed.; Clarendon Press: Oxford, U.K. (1993).
73. Murazawa, N., Juodkazis, S. & Misawa, H. Characterization of Bipolar and Radial Nematic Liquid Crystal Droplets Using Laser-Tweezers. J. Phys. D 38, 2923−2927 (2005).
74. Murazawa, N., Juodkazis, S., Matsuo, S. & Misawa, H. Control of the Molecular Alignment Inside Liquid‐Crystal Droplets by Use of Laser Tweezers. Small 1, 656−661 (2005).
75. Murazawa, N., Juodkazis, S. & Misawa, H. Laser Manipulation of a Smectic Liquid-Crystal Droplet. Eur. Phys. J. E 20, 435−439 (2006).
76. Palffy-Muhoray, P. In Liquid Crystals: Applications and Uses; Bahadur, B., Ed.; World Scientific: River Edge, NJ, Vol. 1 (1990).
77. Khoo, I. C. & Wu, S. T. Optics and Nonlinear Optics of Liquid Crystals; World Scientific: Singapore, Vol. I (1993).
78. Wang, X. Y., Kyu, T., Rudin, A. M. & Taylor, P. L. Fréedericksz Transition in Antiferroelectric Liquid Crystals and Cooperative Motion of Smectic Layers. Phys. Rev. E 58, 5919−5922 (1998).
79. Lavrentovich, O. D. Topological Defects in Dispersed Words and Worlds Around Liquid Crystals, Or Liquid Crystal Drops. Liq. Cryst. 24, 117−125 (1998).
80. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 306, 666–669 (2004).
81. Flynn, G. W. Perspective: The dawning of the age of graphene. J. Chem. Phys. 135, 50901 (2011).
82. Morozov, S.V. et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 100, 11–14 (2008).
83. Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots. Nano Lett. 5, 287–290 (2005).
84. Berger, C. et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).
85. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 4, 611–622 (2010).
86. Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 5, 487–496 (2010).
87. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 10, 4285–4294 (2010).
88. Park, H.-Y. et al. Extremely Low Contact Resistance on Graphene through n-Type Doping and Edge Contact Design. Adv. Mater. 28, 864–870 (2016).
89. Moon, J. S. et al. Ultra-Low Resistance Ohmic Contacts in Graphene Field Effect Transistors. Appl. Phys. Lett. 100, 203512 (2012).
90. Li, W. et al. Ultraviolet/Ozone Treatment to Reduce Metal-Graphene Contact Resistance. Appl. Phys. Lett. 102, 183110 (2013).
91. DiBartolomeo, A. et al. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors. J. Phys. Condens. Matter 25, 155303 (2013).
92. Song, S. M., Park, J. K., Sul, O. J. & Cho, B. J. Determination of Work Function of Graphene under a Metal Electrode and Its Role in Contact Resistance. Nano Lett. 12, 3887–3892 (2012).
93. Robinson, J. A. et al. Contacting Graphene. Appl. Phys. Lett. 98, 53103 (2011).
94. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Contact Resistivity and Current Flow Path at Metal/Graphene Contact. Appl. Phys. Lett. 97, 143514 (2010).
95. Venugopal, A., Colombo, L. & Vogel, E. M. Contact Resistance in Few and Multilayer Graphene Devices. Appl. Phys. Lett. 96, 13512 (2010).
96. Xia, F., Perebeinos, V., Lin, Y., YanqingWu & Avouris, P. The Origins and Limits of Metal–Graphene Junction Resistance. Nat. Nanotechnol. 6, 179–184 (2011).
97. Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact Resistance in Graphene-Based Devices. Phys. E 42, 677–679 (2010).
98. Khomyakov, P. A. et al. First-Principles Study of the Interaction and Charge Transfer Between Graphene and Metals. Phys. Rev. B 79, 195425 (2009).
99. Watanabe, E., Conwill, A., Tsuya, D. &Koide, Y. Low Contact Resistance Metals for Graphene Based Devices. Diam. Relat. Mater. 24, 171–174 (2012).
100. Chan, J. et al. Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition. ACS Nano 6, 3224–3229 (2012).
101. Franklin, A. D., Han, S.-J., Bol, A. A. & Perebeinos, V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett. 33, 17–19 (2012).
102. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011).
103. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A Chem. 221, 187–193 (2011).
104. Klar, P. et al. Raman Scattering Efficiency of Graphene. Phys. Rev. B 87, 205435 (2013).
105. Xia, W. et al. Recent Progress in Van Der Waals Heterojunctions. Nanoscale 9, 4324–4365 (2017).
106. Harris, D. C. Quantitative Chemical Analysis. (W. H. Freeman, 2007).
107. Zheng, W.-T. & Sun, C. Q. Underneath the Fascinations of Carbon Nanotubes and Graphene Nanoribbons. Energy Environ. Sci. 4, 627–655 (2011).
108. Khan, M. F., Iqbal, M. Z., Iqbal, M. W. & Eom, J. Improving the Electrical Properties of Graphene Layers by Chemical Doping. Sci. Technol. Adv. Mater. 15, 55004 (2014).
109. Zheng, H., Mukherjee, S., Gangopadhyay, K. & Gangopadhyay, S. Ultrafine Pt Nanoparticle Induced Doping/Strain of Single Layer Graphene: Experimental Corroboration Between Conduction and Raman Characteristics. J. Mater. Sci. Mater. Electron. 26, 4746–4753 (2015).
110. Pinto, H. & Markevich, A. Electronic and Electrochemical Doping of Graphene by Surface Adsorbates. Beilstein J. Nanotechnol. 5, 1842–1848 (2014).
111. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and Edge Effects in Graphene Devices. Nat. Nanotechnol. 3, 486–490 (2008).
112. Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science. 342, 614–617 (2013).
113. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970).
114. Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. U. S. A. 94, 4853–4860 (1997).
115. Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 5, 1937–1942 (2005).
116. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).
117. Bartlett, P. & Henderson, S. Three-dimensional force calibration of a single-beam optical gradient trap. J. physics. Condens. matter 14, 7757–7768 (2002).
118. Urban, A. S., Lutich, A. A., Stefani, F. D. & Feldmann, J. Laser Printing Single Gold Nanoparticles. Nano Lett. 10, 4794–4798 (2010).
119. Hofkens, J. et al. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene-Labeled PNIPAM. J. Am. Chem. Soc. 119, 2741–2742 (1997).
120. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N-isopropylacrylamide) in Aqueous Solution. Langmuir 13, 414–419 (1997).
121. Masuhara, H. et al. Laser-Trapping Assembling Dynamics of Molecules and Proteins at Surface and Interface. Pure Appl. Chem. 83, 869–883 (2011).
122. Rungsimanon, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Cryst. Growth Des. 10, 4686–4688 (2010).
123. Rungsimanon, T. et al. Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. J. Phys. Chem. Lett. 1, 599–603 (2010).
124. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589–5593 (2010).
125. Hajizadeh, F. & S.Reihani, S. N. Optimized Optical Trapping of Gold Nanoparticles. Opt. Express 18, 551–559 (2010).
126. Pan, L., Ishikawa, A. & Tamai, N. Detection of Optical Trapping of CdTe Quantum Dots by Two-Photon-Induced Luminescence. Phys. Rev. B 75, 161305-1-161305–4 (2007).
127. Agate, B., Brown, C., Sibbett, W. & Dholakia, K. Femtosecond Optical Tweezers for In-Situ Control of Two-Photon Fluorescence. Opt. Express 12, 3011–7 (2004).
128. Shane, J. C., Mazilu, M., Lee, W. M. & Dholakia, K. Effect of Pulse Temporal Shape on Optical Trapping and Impulse Transfer Using Ultrashort Pulsed Lasers. Opt. Express 18, 7554–7668 (2010).
129. Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear Optical Effects in Trapping Nanoparticles with Femtosecond Pulses. Nat. Phys. 6, 1005–1009 (2010).
130. Wang, L.-G. & Zhao, C.-L. Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on a Rayleigh Dielectric Sphere. Opt. Express 15, 10615–10621 (2007).
131. Messina, E. et al. Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids. J. Phys. Chem. C 115, 5115–5122 (2011).
132. Bendix, P. M., Jauffred, L., Norregaard, K. & Oddershede, L. B. Optical Trapping of Nanoparticles and Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 20, 4800112 (2014).
133. Miles, R. E. H., Rudié, S., Orr-Ewing, A. J. & Reid, J. P. Influence of Uncertainties in the Diameter and Refractive Index of Calibration Polystyrene Beads on the Retrieval of Aerosol Optical Properties Using Cavity Ring Down Spectroscopy. J. Phys. Chem. A 114, 7077–7084 (2010).
134. Lehmuskero, A., Ogier, R., Gschneidtner, T., Johansson, P. & Käll, M. Ultrafast Spinning of Gold Nanoparticles in Water Using Circularly Polarized Light. Nano Lett. 13, 3129−3134 (2013).
135. Usman, A., Chiang, W.-Y., Uwada, T. & Masuhara, H. Polarization and Droplet Size Effects in the Laser-Trapping-Induced Reconfiguration in Individual Nematic Liquid Crystal Microdroplets. J. Phys. Chem. B 16, 4536–4540 (2013).
136. Wang, L.-G. & Chai, H.-S. Revisit on Dynamic Radiation Forces Induced by Pulsed Gaussian Beams. Opt. Express 19, 14389–14402 (2011).
137. Davis, L. W. Theory of Electromagnetic Beams. Phys. Rev. A 19, 1177–1179 (1979).
138. Harada, Y. & Asakura, T. Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 124, 529–541 (1996).
139. Simpson, S. H. Inhomogeneous and Anisotropic Particles in Optical Traps: Physical Behaviour and Applications. J. Quant. Spectrosc. Radiat. Transf. 146, 81–99 (2014).
140. Phillips, D. B. et al. Shape-induced force fields in optical trapping. Nat. Photonics 8, 400–405 (2014).
141. Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three-Dimensional Optical Control of Individual Quantum Dots. Nano Lett. 8, 3376–3380 (2008).
142. Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, 2006). doi:https://doi.org/10.1017/CBO9780511813535
143. Bloemer, M. J., Haus, J. W. & Ashley, P. R. Degenerate Four-Wave Mixing in Colloidal Gold as a Function of Particle Size. J. Opt. Soc. Am. B 7, 790–795 (1990).
144. Gendron, P.-O., Avaltroni, F. & Wilkinson, K. J. Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. J. Fluoresc. 18, 1093–1101 (2008).
145. Jaquay, E., Martínez, L. J., Mejia, C. A. & Povinelli, M. L. Light-Assisted, Templated Self-Assembly Using a Photonic-Crystal Slab. Nano Lett. 13, 2290–2294 (2013).
146. Khorasani, F. B., Poling-Skutvik, R., Krishnamoorti, R. & Conrad, J. C. Mobility of Nanoparticles in Semidilute Polyelectrolyte Solutions Firoozeh. Macromolecules 47, 5328–5333 (2014).
147. Efstathios E. Michaelides. Nanoparticle Diffusivity in Narrow Cylindrical Pores. Int. J. Heat Mass Transf. 114, 607–612 (2017).
148. Jerome, F. S., Tseng, J. T. & Fan, L. T. Viscosities of Aqueous Glycol Solutions. J. Chem. Eng. Data 13, 496 (1968).
149. Ługowski, R., Kołodziejczyk, B. & Kawata, Y. Application of Laser-Trapping Technique for Measuring the Three-Dimensional Distribution of Viscosity. Opt. Commun. 202, 1–8 (2002).
150. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A Chem. 221, 187–193 (2011).
151. Yguerabide, J. & Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications II. Anal. Biochem. 262, 157–176 (1998).
152. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping and Polarization-Controlled Scattering of Dielectric Spherical Nanoparticles by Femtosecond Laser Pulses. J. Photochem. Photobiol. A Chem. 234, 83–90 (2012).
153. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse-Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182–19188 (2013).
154. Usman, A., Chiang, W.-Y. & Masuhara, H. Femtosecond Trapping Efficiency Enhanced for Nano-sized Silica Spheres. Proc. SPIE 8458, 845833 (2012).
155. Lee, Y.-L., Du, Z.-C., Lin, W.-X. & Yang, Y.-M. Monolayer Behavior of Silica Particles at Air/Water Interface: A Comparison Between Chemical and Physical Modifications of Surface. J. Colloid Interface Sci. 296, 233–241 (2006).
156. Bagwe, R. P., Hilliard, L. R. & Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 22, 4357–4362 (2006).
157. Muramatsu, M., Shen, T.-F., Chiang, W.-Y., Usman, A. & Masuhara, H. Picosecond Motional Relaxation of Nanoparticles in Femtosecond Laser Trapping. J. Phys. Chem. C 120, 5251–5256 (2016).
158. Ito, F., Kogasaka, Y. & Yamamoto, K. Fluorescence Spectral Changes of Perylene in Polymer Matrices during the Solvent Evaporation Process. J. Phys. Chem. B 117, 3675–3681 (2013).
159. Balakrishnan, K. et al. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. J. Am. Chem. Soc. 128, 7390–7398 (2006).
160. Yang, X., Xu, X. & Ji, H. F. Solvent effect on the self-assembled structure of an amphiphilic perylene diimide derivative. J. Phys. Chem. B 112, 7196–7202 (2008).
161. Beckers, E. H. A. et al. Influence of Intermolecular Orientation on the Photoinduced Charge Transfer Kinetics in Self-Assembled Aggregates of Donor-Acceptor Arrays. J. Am. Chem. Soc. 128, 649–657 (2006).
162. Wang, H., Schaefer, K., Pich, A. & Moeller, M. Synthesis of Silica Encapsulated Perylenetetracarboxylic Diimide Core?Shell Nanoellipsoids. Chem. Mater. 23, 4748–4755 (2011).
163. Liu, S.-G., Sui, G., Cormier, R. A., Leblanc, R. M. & Gregg, B. A. Self-Organizing Liquid Crystal Perylene Diimide Thin Films: Spectroscopy, Crystallinity, and Molecular Orientation. J. Phys. Chem. B 106, 1307–1315 (2002).
164. Ribeiro, T., Baleizão, C. & Farinha, J. P. S. Synthesis and Characterization of Perylenediimide Labeled Core−Shell Hybrid Silica−Polymer Nanoparticles. J. Phys. Chem. C 113, 18082–18090 (2009).
165. Tröster, H. Untersuchungen zur Protonierung von Perylen-3,4,9,10- tetracarbonsiiurealkalisalzen. Dye. Pigment. 4, 171–177 (1983).
166. Nagao, Y., Naito, T., Abe, Y. & Misono, T. Synthesis and properties of long and branched alkyl chain substituted perylenetetracarboxylic monoanhydride monoimides. Dye. Pigment. 32, 71–83 (1996).
167. Zhuravlev, L. T. The Surface Chemistry of Amorphous Silica. Zhuravlev Model. Colloids Surfaces A Physicochem. Eng. Asp. 173, 1–38 (2000).
168. Ashkin, A. Acceleration and Trapping of Particle by Radiation Pressure. Phys. Rev. Lett. 24, 156−159 (1970).
169. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 11, 288−290 (1986).
170. Ashkin, A. & Dziedzic, J. M. Optical Trapping and Manipulation of Viruses and Bacteria. Science 235, 1517−1520 (1987).
171. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H., Taniguchi, T. & Miyashita, T. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene- Labelled PNIPAM. J. Am. Chem. Soc. 119, 2741−2742 (1997).
172. Grier, D. G. A Revolution in Optical Manipulation. Nature 424, 810−816 (2003).
173. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787−2809 (2004).
174. Dholakia, K., Reece, P. & Gu, M. Optical Micromanipulation. Chem. Soc. Rev. 37,42−55 (2008).
175. Sugiyama, T., Yuyama, K. & Masuhara, H. Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Acc. Chem. Res. 45, 1946−1954 (2012).
176. Harada, Y. & Asakura, T. Radiation Force on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 124, 529−541 (1996).
177. Yoshikawa, H., Matsui, T. & Masuhara, H. Reversible Assembly of Gold Nanoparticles Confined in an Optical Microcage. Phys. Rev. E 70, 061406 (2004).
178. Hajizadeh, F. & Reihani, S. N. S. Optimized Optical Trapping of Gold Nanoparticles. Opt. Express 18, 551−559 (2010).
179. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Enhancement of Biased Diffusion of Dye-Doped Nanoparticles by Simultaneous Irradiation with Resonance and Nonresonance Laser Beams. Jpn. J. Appl. Phys. 45, L453−L456 (2006).
180. Shoji, T., Kitamura, N. & T suboi, Y. Resonant Excitation Effect on Optical Trapping of Myoglobin: The Important Role of a Heme Cofactor. J. Phys. Chem. C 117, 10691−10697 (2013).
181. Iida, T. & Ishihara, H. Optically Induced Mechanical Interaction between Semiconductor Quantum Dots under an Electronic Resonance Condition. Phys. A 26, 163−168 (2005).
182. Iida, T. & Ishihara, H. Optically Induced Force between Nano- Particles Irradiated by electronic Resonant Light. J. Lumin. 112, 151−155 (2005).
183. Iida, T. & Ishihara, H. Theory of Resonant Radiation Force Exerted on Nanostructures by Optical Excitation of Their Quantum States: From Microscopic to Macroscopic Descriptions. Phys. Rev. B 77, 245319 (2008).
184. Juan, M. L., Righini, M. & Quidant, R. Plasmon Nano-Optical Tweezers. Nat. Photonics 5, 349−356 (2011).
185. Pan, L., Ishikawa, A. & Tamai, N. Detection of Optical Trapping of CdTe Quantum Dots by Two-Photon-Induced Luminescence. Phys. Rev. B 75, 161305 (2007).
186. Tsuboi, Y., Shoji, T., Kitamura, N., Takase, M., Murakoshi, K., Mizumoto, Y. & Ishihara, H. Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon. J. Phys. Chem. Lett. 1, 2327−2333 (2010).
187. Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three- Dimensional Optical Control of Individual Quantum Dots. Nano Lett. 8, 3376−3380 (2008).
188. Jauffred, L. & Oddershede, L. B. Two-Photon Quantum Dot Excitation during Optical Trapping. Nano Lett. 10, 1927−1930 (2010).
189. Head, C. R., Kammann, E., Zanella, M., Manna, L. & Lagoudakis, P. G. Spinning Nanorods -Active Optical Manipulation of Semi- conductor Nanorods using Polarised Light. Nanoscale 4, 3693− 3697 (2012).
190. Kudo, T. & Ishihara, H. Proposed Nonlinear Resonance Laser Technique for Manipulating Nanoparticles. Phys. Rev. Lett. 109, 087402 (2012).
191. Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear Optical Effects in Trapping Nanoparticles with Femtosecond Pulses. Nat. Phys. 6, 1005−1009 (2010).
192. Shoji, T., Saitoh, J., Kitamura, N., Nagasawa, F., Murakoshi, K., Yamauchi, H., Ito, S., Miyasaka, H., Ishihara, H. & Tsuboi, Y. Permanent Fixing or Reversible Trapping and Release of DNA Micropatterns on a Gold Nanostructure Using Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light. J. Am. Chem. Soc. 135, 6643−6648 (2013).
193. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping and Polarization-Controlled Scattering of Dielectric Spherical Nano- particles by Femtosecond Laser Pulses. J. Photochem. Photobiol., A 234,83−90 (2012).
194. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping of Nanoparticles with Ultrashort Laser Pulses. Sci. Prog. 96,1−18 (2013).
195. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse- Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182−19188 (2013).
196. Padilha, L. A., Fu, J., Hagan, D. J. & Van Stryland, E. W. Two- Photon Absorption in CdTe Quantum Dots. Opt. Express 13, 6460−6467 (2005).
197. Cirloganu, C. M., Padilha, L. A., Fishman, D. A., Webster, S., Hagan, D. J. & Van Stryland, E. W. Extremely Nondegenerate Two- Photon Absorption in Direct-Gap Semiconductor. Opt. Express 19, 22951−22960 (2011).
198. Agate, B., Brown, C. T. A., Sibbett, W. & Dholakia, K. Femtosecond Optical Tweezers for In-Situ Control of Two-Photon Fluorescence. Opt. Express 12, 3011−3017 (2004).
199. Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., Eychmuller, A. & Weller, H. Thiol- Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B 106, 7177−7185 (2002).
200. Wolcott, A., Gerion, D., Visconte, M., Sun, J., Schwartzberg, A., Chen, S. & Zhang, J. Z. Silica-Coated CdTe Quantum Dots Function- alized with Thiols for Bioconjugation to IgG Proteins. J. Phys. Chem. B 110, 5779−5789 (2006).
201. Tomasulo, M., Yildiz, I. & Raymo, F. M. pH-Sensitive Quantum Dots. J. Phys. Chem. B 110, 3853−3855 (2006).
202. Mandal, A., Nakayama, J., Tamai, N., Biju, V. & Ishikawa, M. Optical and Dynamic Properties of Water-Soluble Highly Luminescent CdTe Quantum Dots. J. Phys. Chem. B 111, 12765−12771 (2007).
203. Winter, S., Zielinski, M., Chauvat, D., Zyss, J. & Oron, D. The Second-Order Nonlinear Susceptibility of Quantum Confined Semi- conductors-A Single Dot Study. J. Phys. Chem. C 115, 4558− 4563 (2011).
204. Ma, S. M., Seo, J. T., Yang, Q., Battle, R., Brown, H., Lee, K., Creekmore, L., Jackson, A., Skyles, T., Tabibi, B., et al. Third-Order Nonlinear Susceptibility and Hyperpolarizability of CdSe Nanocrystals with Femtosecond Excitation. J. Korean Phys. Soc. 48, 1379− 1384 (2006).
205. Pan, L., Tamai, N., Kamada, K. & Deki, S. Nonlinear Optical Properties of Thiol-Capped CdTe Quantum Dots in Nonresonant Region. Appl. Phys. Lett. 91, 051902 (2007).
206. Dakovski, G. L. & Shan, J. Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots. J. Appl. Phys. 114, 014301 (2013).
207. Szeremeta, J., Nyk, M., Wawrzynczyk, D. & Samoc, M. Wavelength Dependence of Nonlinear Optical Properties of Colloidal CdS QDs. Nanoscale 5, 2388−2393 (2013).
208. ivas, M. G., Cury, J. F., Schiavon, M. A. & Mendonca, C. R. Two-Photon Absorption of ZnS Quantum Dots: Interpreting the Nonlinear Spectrum. J. Phys. Chem. C 117, 8530−8535 (2013).
209. López-Suárez, A., Rangel-Rojo, R., Torres-Torres, C., Benami, A., Tamayo-Rivera, L., Reyes-Esqueda, J. A., Cheang-Wong, J. C., Rodríguez-Fernández, L., Crespo-Sosa, A. & Oliver, A. Enhancement of the Optical Kerr Effect Exhibited by an Integrated Configuration of Silicon Quantum Dots and Silver Nanoparticles. J. Phys.: Conf. Ser. 274, 012145 (2011).
210. Bloemer, M. J., Haus, J. W. & Ashley, P. R. Degenerate of Four- Wave Mixing in Colloidal Gold as a Function of Particle Size. J. Opt. Soc. Am. B 7, 790−795 (1990).
211. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York (1983).
212. Klimov, V. I. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B 104, 6112−6123 (2000).
213. Schaller, R. D. & Klimov, V. I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 186601 (2004).
214. Nozik, A. J. Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion. Inorg. Chem. 44, 6893−6899 (2005).
215. Beard, M. C., Knutsen, K. P., Yu, P., Luther, J. M., Song, Q., Metzger, W. K., Ellingson, R. J. & Nozik, A. J. Multiple Exciton Generation in Colloidal Silican Nanocrystals. Nano Lett. 7, 2506−2512 (2007).
216. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation. Science 324, 1542−1544 (2009).
217. Kobayashi, Y., Pan, L. & Tamai, N. Effects of Size and Capping Reagents on Biexciton Auger Recombination Dynamics of CdTe Quantum Dots. J. Phys. Chem. C 113, 11783−11789 (2009).
218. Wu, F., Lewis, J. W., Kliger, D. S. & Zhang, J. Z. Unusual Excitation Intensity Dependence of Fluorescence of CdTe Nano- particles. J. Chem. Phys. 118,12−16 (2003).
219. Padilha, L. A., Neves, A. A. R., Cesar, C. L., Barbosa, L. C. & Cruz, C. H. B. Recombination Processes in CdTe Quantum-Dot- Doped Glasses. Appl. Phys. Lett. 85, 3256−3258 (2004).
220. Christensen, E. A., Kulatunga, P. & Lagerholm, B. C. A Single Molecule Investigation of the Photostability of Quantum Dots. PLoS One 7, e44355 (2012).
221. Dancus, I., Vlad, V. I., Petris, A., Gaponik, N., Shavel, A. & Eychmuller, A. Nonlinear Optical Properties of CdTe QDs Near the Resonance Regime. J. Optoelectron. Adv. Mater. 10, 149−151 (2008).
222. Chen, J., Chen, X., Xu, R., Zhu, Y., Shi, Y. & Zhu, X. Refractive Index of Aqueous Solution of CdTe Quantum Dots. Opt. Commun. 281, 3578−3580 (2008).
223. Eid, J. et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138 (2009).
224. Uemura, S. et al. Real-Time tRNA Transit on Single Translating Ribosomes at Codon Resolution. Nature 464, 1012–1017 (2010).
225. Lu, H. P., Xun, L. & Xie, X. S. Single-Molecule Enzymatic Dynamics. Science 282, 1877–1882 (1998).
226. Masuhara, H., Sugiyama, T., Yuyama, K. & Usman, A. Optical Trapping Assembling of Clusters and Nanoparticles in Solution by CW and Femtosecond Lasers. Opt. Rev. 22, 143–148 (2015).
227. Berthelot, J. et al. Three-Dimensional Manipulation with Scanning Near-Field Optical Nanotweezers. Nat. Nanotechnol. 9, 295–299 (2014).
228. Andres-Arroyo, A., Gupta, B., Wang, F., Gooding, J. J. & Reece, P. J. Optical Manipulation and Spectroscopy of Silicon Nanoparticles Exhibiting Dielectric Resonances. Nano Lett. 16, 1903–1910 (2016).
229. Li, M., Lohmuller, T. & Feldmann, J. Optical Injection of Gold Nanoparticles into Living Cells. Nano Lett. 15, 770–775 (2015).
230. Lehmuskero, A., Johansson, P., Rubinsztein-Dunlop, H., Tong, L. & Käll, M. Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano 9, 3453–3469 (2015).
231. Kang, Z. et al. Trapping and Assembling of Particles and Live Cells on Large-Scale Random Gold Nano-Island Substrates. Sci. Rep. 5, 1–8 (2015).
232. Huang, J.-S. & Yang, Y.-T. Origin and Future of Plasmonic Optical Tweezers. Nanomaterials 5, 1048–1065 (2015).
233. Enders, M., Mukai, S., Uwada, T. & Hashimoto, S. Plasmonic Nanofabrication through Optical Heating. J. Phys. Chem. C 120, 6723–6732 (2016).
234. Ohlinger, A., Nedev, S., Lutich, A. A. & Feldmann, J. Optothermal Escape of Plasmonically Coupled Silver Nanoparticles from a Three-Dimensional Optical Trap. Nano Lett. 11, 1770–1774 (2011).
235. Li, G.-C., Zhang, Y.-L., Jiang, J., Luo, Y. & Lei, D. Y. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. ACS Nano 11, 3067−3080 (2017).
236. Zhang, T., Gao, N., Li, S., Lang, M. J. & Xu, Q. H. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. J. Phys. Chem. Lett. 6, 2043–2049 (2015).
237. Annink, C. & Gill, R. Nanoparticle Aggregate-Based Fluorescence Enhancement for Highly Sensitive and Reproducible Detection of DNA. Part. Part. Syst. Charact. 31, 943–947 (2014).
238. Gill, R., Tian, L., vanAmerongen, H. & Subramaniam, V. Emission Enhancement and Lifetime Modification of Phosphorescence on Silver Nanoparticle Aggregates. Phys. Chem. Chem. Phys. 15, 15734--15739 (2013).
239. Dulkeith, E. et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 89, 203002 (2002).
240. Xue, C., Xue, Y., Dai, L., Urbas, A. & Li, Q. Size- and Shape-Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye. Adv. Opt. Mater. 1, 581–587 (2013).
241. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
242. Setoura, K., Ito, S. & Miyasaka, H. Stationary Bubble Formation and Marangoni Convection Induced by CW Laser Heating of a Single Gold Nanoparticle. Nanoscale 9, 719–730 (2017).
243. Li, Y., Zhoua, K., Tor, S. B., Chuaa, C. K. & Leong, K. F. Heat Transfer and Phase Transition in the Selective Laser Melting Process. Int. J. Heat Mass Transf. 108, 2408–2416 (2017).
244. Li, Y., Zhou, K., Tor, S. B., Chua, C. K. & Leong, K. F. Heat Transfer and Phase Transition in the Selective Laser Melting Process. Int. J. Heat Mass Transf. 108, 2408–2416 (2017).
245. Aibara, I., Chikazawa, J., Uwada, T. & Hashimoto, S. Localized Phase Separation of Thermoresponsive Polymers Induced by Plasmonic Heating. J. Phys. Chem. C 121, 22496−22507 (2017).
246. Adelmann, B. & Hellmann, R. A Study of SiC Decomposition under Laser Irradiation. Appl. Phys. A 123, 454 (2017).
247. Guay, J.-M. et al. Polarization-Dependent Femtosecond Laser Ablation of Poly-Methyl Methacrylate. New J. Phys. 14, 85010-1-85010–16 (2012).
248. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔