|
1. Lebedev, P. N. Experimental Examination of Light Pressure. Ann. Phys. 6, 1–26 (1901). 2. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970). 3. Ashkin, A. & Dziedzic, J. M. Optical Levitation in High Vacuum. Appl. Phys. Lett. 28, 333–335 (1976). 4. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004). 5. Grier, D. G. A Revolution in Optical Manipulation. Nature 424, 810–816 (2003). 6. Ashkin, A. & Fellow, L. History of Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules. IEEE J. Quantum Electron. 6, 841–856 (2000). 7. Molloy, J. E. & Padgett, M. J. Lights, Action: Optical Tweezers. Contemp. Phys. 43, 241–258 (2002). 8. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N-isopropylacrylamide) in Aqueous Solution. Langmuir 13, 414–419 (1997). 9. Hofkens, J. et al. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene-Labeled PNIPAM. J. Am. Chem. Soc. 119, 2741–2742 (1997). 10. Nabetani, Y., Yoshikawa, H., Grimsdale, A. C., Müllen, K. & Masuhara, H. Effects of Optical Trapping and Liquid Surface Deformation on the Laser Microdeposition of a Polymer Assembly in Solution. Langmuir 23, 6725–6729 (2007). 11. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011). 12. Adachi, H. et al. Laser Irradiated Growth of Protein Crystal. Jpn. J. Appl. Phys. 42, L798–L800 (2003). 13. Sugiyama, T. & Masuhara, H. Laser-Induced Crystallization and Crystal Growth. Chem. - An Asian J. 6, 2878–2889 (2011). 14. Sugiyama, T., Yuyama, K.-I. & Masuhara, H. Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Acc. Chem. Res. 45, 1946–1954 (2012). 15. Sugiyama, T., Adachi, T. & Masuhara, H. Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chem. Lett. 36, 1480–1481 (2007). 16. Rungsimanon, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Cryst. Growth Des. 10, 4686–4688 (2010). 17. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589–5593 (2010). 18. Tu, J.-R., Yuyama, K., Masuhara, H. & Sugiyama, T. Dynamics and Mechanism of Laser Trapping-Induced Crystal Growth of Hen Egg White Lysozyme. Cryst. Growth Des. 15, 4760–4767 (2015). 19. Kudo, T., Wang, S.-F., Yuyama, K. & Masuhara, H. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation. Nano Lett. 16, 3058–3062 (2016). 20. Wang, S.-F., Kudo, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface. Langmuir 32, 12488–12496 (2016). 21. Wang, S.-F., Yuyama, K., Sugiyama, T. & Masuhara, H. Reflection Microspectroscopic Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface. J. Phys. Chem. C 120, 15578–15585 (2016). 22. Masuhara, H., Sugiyama, T., Yuyama, K. & Usman, A. Optical Trapping Assembling of Clusters and Nanoparticles in Solution by CW and Femtosecond Lasers. Opt. Rev. 22, 143–148 (2015). 23. Hotta, J., Sasaki, K. & Masuhara, H. A Single Droplet Formation from Swelled Micelles by Radiation Pressure of a Focused Infrared Laser Beam. J. Am. Chem. Soc. 118, 11968–11969 (1996). 24. Ito, S., Yoshikawa, H. & Masuhara, H. Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature. Appl. Phys. Lett. 80, 482–484 (2002). 25. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Optical Assembling Dynamics of Individual Polymer Nanospheres Investigated by Single-Particle Fluorescence Detection. Phys. Rev. E 70, 61410 (2004). 26. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Cluster Formation of Nanoparticles in an Optical Trap Studied by Fluorescence Correlation Spectroscopy. Phys. Rev. E 72, 21408 (2005). 27. Khoo, I.-C., Park, J.-H. & Liou, J. D. Theory and Experimental Studies of All-Optical Transmission Switching in a Twist-Alignment Dye-Doped Nematic Liquid Crystal. J. Opt. Soc. Am. B 25, 1931 (2008). 28. Smalyukh, I. I., Kaputa, D. S., Kachynski, A.V., Kuzmin, A. N. & Prasad, P. N. Optical Trapping of Director Structures and Defects in Liquid Crystals Using Laser Tweezers. Opt. Express 15, 4359 (2007). 29. Brasselet, E. & Juodkazis, S. Optical Angular Manipulation of Liquid Crystal Droplets in Laser Tweezers. J. Nonlinear Opt. Phys. Mater. 18, 167–194 (2009). 30. Murazawa, N., Juodkazis, S., Matsuo, S. & Misawa, H. Control of the Molecular Alignment Inside Liquid- Crystal Droplets by Use of Laser Tweezers. Small 1, 656–661 (2005). 31. Juodkazis, S., Matsuo, S., Murazawa, N., Hasegawa, I. & Misawa, H. High-Efficiency Optical Transfer of Torque to a Nematic Liquid Crystal Droplet. Appl. Phys. Lett. 82, 4657–4659 (2003). 32. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse-Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182–19188 (2013). 33. Wang, L.-G. & Zhao, C.-L. Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on a Rayleigh Dielectric Sphere. Opt. Express 15, 10615–10621 (2007). 34. Kittiravechote, A., Chiang, W.-Y., Usman, A., Liau, I. & Masuhara, H. Enhanced Optical Confinement of Dye-Doped Dielectric Nanoparticles Using a Picosecond-Pulsed Near-Infrared Laser. Laser Phys. Lett. 11, 76001 (2014). 35. Kittiravechote, A., Usman, A., Masuhara, H. & Liau, I. Enhanced optical confinement of dielectric nanoparticles by two-photon resonance transition. RSC Adv. 7, 42606–42613 (2017). 36. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Enhancement of Biased Diffusion of Dye-Doped Nanoparticles by Simultaneous Irradiation with Resonance and Nonresonance Laser Beams. Jpn. J. Appl. Phys. 45, L453–L456 (2006). 37. Min, C. et al. Focused Plasmonic Trapping of Metallic Particles. Nat. Commun. 4, 2891 (2013). 38. Punj, D. et al. A Plasmonic “Antenna-In-Box” Platform for Enhanced Single-Molecule Analysis at Micromolar Concentrations. Nat. Nanotechnol. 8, 512–516 (2013). 39. Shao, L., Yang, Z.-J., Andrén, D., Johansson, P. & Käll, M. Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. ACS Nano 9, 12542–12551 (2015). 40. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156−159 (1970). 41. Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. U.S.A. 94, 4853−4860 (1997). 42. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 11, 288−290 (1986). 43. Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N. & Masuhara, H. Laser-Scanning Micromanipulation and Spatial Patterning of Fine Particles. Jpn. J. Appl. Phys. 30, L907−L909 (1991). 44. Urban, A. S., Lutich, A. A., Stefani, F. D. & Feldmann, Laser Printing Single Gold Nanoparticles. J. Nano Lett. 10, 4794−4798 (2010). 45. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787− 2809 (2004). 46. Bartlett, P. & Henderson, S. Three-Dimensional Force Calibration of a Single-Beam Optical Gradient Trap. J. Phys.: Condens. Matter 14, 7757−7768 (2002). 47. Ito, S., Tanaka, Y., Yoshikawa, H., Ishibashi, Y., Miyasaka, H. & Masuhara, H. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 113, 14472−14475 (2011). 48. Sugiyama, T., Adachi, T. & Masuhara, H. Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chem. Lett. 36, 1480−1481 (2007). 49. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589−5593 (2010). 50. Masuhara, H., Sugiyama, T., Rungsimanon, T., Yuyama, K., Miura, A. & Tu, J.-R. Laser-Trapping Assembling Dynamics of Molecules and Proteins at Surface and Interface. Pure Appl. Chem. 83, 869−883 (2011). 51. Rungsimanon, T., Yuyama, K., Sugiyama, T., Masuhara, H., Tohnai, N. & Miyata, M. Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. J. Phys. Chem. Lett. 1, 599−603 (2010). 52. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A: Chemistry 221, 187−193 (2011). 53. Sun, X., Garetz, B. A., Moreira, M. F. & Palffy-Muhoray, P. Nonphotochemical Laser-Induced Nucleation of Nematic Phase and Alignment of Nematic Director from a Supercooled Thermotropic Liquid Crystal. Phys. Rev. E 79, 021701 (2009). 54. Usman, A., Uwada, T. & Masuhara, H. Optical Reorientation and Trapping of Nematic Liquid Crystals Leading to the Formation of Micrometer-Sized Domain. J. Phys. Chem. C 115, 11906−11913 (2011). 55. Erdmann, J. H., Žumer, S. & Doane, J. W. Configuration Transition in a Nematic Liquid Crystal Confined to a Small Spherical Cavity. Phys. Rev. Lett. 64, 1907−1910 (1990). 56. Doane, J. W., Vaz, N. A., Wu, B.-G. & Žumer, S. Field Controlled Light Scattering from Nematic Microdroplets. Appl. Phys. Lett. 48, 269−271 (1986). 57. Amundson, K. Electro-Optic Properties of a Polymer-Dispersed Liquid-Crystal Film: Temperature Dependence and Phase Behavior. Phys. Rev. E 53, 2412−2422 (1996). 58. Khoo, I. C., Liu, T. H. & Yan, P. Y. Nonlocal Radial Dependence of Laser-Induced Molecular Reorientation in a Nematic Liquid Crystal: Theory and Experiment. J. Opt. Soc. Am. B 4, 115−120 (1987). 59. Zolot́ko, A. S., Kitieva, V. F., Kuyumchyan, V. A., Sobolev, N. N. & Sukhorukov, A. P. Light-Induced Second-Order Phase Transition in a Spatially Bounded Region of a Nematic Liquid Crystal. JETP Lett. 36,80−84 (1982). 60. Brasselet, E., Lherbier, A. & Dubé, L.J. Transverse Nonlocal Effects in Optical Reorientation of Nematic Liquid Crystals. J. Opt. Soc. Am. B 23,36−44 (2006). 61. Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S. & Misawa, H. Fast Optical Switching by a Laser-Manipulated Microdroplet of Liquid Crystal. Appl. Phys. Lett. 74, 3627−3629 (1999). 62. Juodkazis, S., Matsuo, S., Murazawa, N., Hasegawa, I. & Misawa, H. High-Efficiency Optical Transfer of Torque to a Nematic Liquid Crystal Droplet. Appl. Phys. Lett. 82, 4657−4659 (2003). 63. Wood, T. A., Gleeson, H. F., Dickinson, M. R. & Wright, A. J. Mechanisms of Optical Angular Momentum Transfer to Nematic Liquid Crystalline Droplets. Appl. Phys. Lett. 84, 4292−4294 (2004). 64. Gleeson, H. F., Wood, T. A. & Dickinson, M. Laser Manipulation in Liquid Crystals: An Approach to Microfluidics and Micromachines. Philos. Trans. R. Soc. London, Ser. A 364, 2789−2805 (2006). 65. Yang, Y., Brimicombe, P. D., Roberts, N. W., Dickinson, M. R., Osipov, M. & Gleeson, H. F. Continuously Rotating Chiral Liquid Crystal Droplets in a Linearly Polarized Laser Trap. Opt. Express 16, 6877−6882 (2008). 66. Brasselet, E., Murazawa, N., Juodkazis, S. & Misawa, H. Statics and Dynamics of Radial Nematic Liquid-Crystal Droplets Manipulated by Laser Tweezers. Phys. Rev. E 77, 041704 (2008). 67. Brasselet, E. & Juodkazis, S. Optical Angular Manipulation of Liquid Crystal Droplets in Laser Tweezers. J. Nonlinear Opt. Phys. Mater. 18, 167−194 (2009). 68. Juodkazis, S., Mukai, N., Wakaki, R., Yamaguchi, A., Matsuo, S. & Misawa, H. Reversible Phase Transitions in Polymer Gels Induced by Radiation Forces. Nature 408, 178−181 (2000). 69. Ito, S., Sugiyama, T., Toitani, N., Katayama, G. & Miyasaka, H. Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature in Solutions under Optical Trapping Condition. J. Phys. Chem. B 111, 2365−2371 (2007). 70. Durbin, S. D., Arakelian, S. M. & Shen, Y. R. Laser-Induced Diffraction Rings from a Nematic-Liquid-Crystal Film. Opt. Lett. 6, 411−1414 (1981). 71. Khoo, I. C., Hou, J. Y., Liu, T. H., Yan, P. Y., Michael, R. R. & Finn, G. M. Transverse Self-Phase Modulation and Bistability in the Transmission of a Laser Beam Through a Nonlinear Thin Film. J. Opt. Soc. Am. B 4, 886−891 (1987). 72. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals, 2nd ed.; Clarendon Press: Oxford, U.K. (1993). 73. Murazawa, N., Juodkazis, S. & Misawa, H. Characterization of Bipolar and Radial Nematic Liquid Crystal Droplets Using Laser-Tweezers. J. Phys. D 38, 2923−2927 (2005). 74. Murazawa, N., Juodkazis, S., Matsuo, S. & Misawa, H. Control of the Molecular Alignment Inside Liquid‐Crystal Droplets by Use of Laser Tweezers. Small 1, 656−661 (2005). 75. Murazawa, N., Juodkazis, S. & Misawa, H. Laser Manipulation of a Smectic Liquid-Crystal Droplet. Eur. Phys. J. E 20, 435−439 (2006). 76. Palffy-Muhoray, P. In Liquid Crystals: Applications and Uses; Bahadur, B., Ed.; World Scientific: River Edge, NJ, Vol. 1 (1990). 77. Khoo, I. C. & Wu, S. T. Optics and Nonlinear Optics of Liquid Crystals; World Scientific: Singapore, Vol. I (1993). 78. Wang, X. Y., Kyu, T., Rudin, A. M. & Taylor, P. L. Fréedericksz Transition in Antiferroelectric Liquid Crystals and Cooperative Motion of Smectic Layers. Phys. Rev. E 58, 5919−5922 (1998). 79. Lavrentovich, O. D. Topological Defects in Dispersed Words and Worlds Around Liquid Crystals, Or Liquid Crystal Drops. Liq. Cryst. 24, 117−125 (1998). 80. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 306, 666–669 (2004). 81. Flynn, G. W. Perspective: The dawning of the age of graphene. J. Chem. Phys. 135, 50901 (2011). 82. Morozov, S.V. et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 100, 11–14 (2008). 83. Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots. Nano Lett. 5, 287–290 (2005). 84. Berger, C. et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). 85. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 4, 611–622 (2010). 86. Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 5, 487–496 (2010). 87. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 10, 4285–4294 (2010). 88. Park, H.-Y. et al. Extremely Low Contact Resistance on Graphene through n-Type Doping and Edge Contact Design. Adv. Mater. 28, 864–870 (2016). 89. Moon, J. S. et al. Ultra-Low Resistance Ohmic Contacts in Graphene Field Effect Transistors. Appl. Phys. Lett. 100, 203512 (2012). 90. Li, W. et al. Ultraviolet/Ozone Treatment to Reduce Metal-Graphene Contact Resistance. Appl. Phys. Lett. 102, 183110 (2013). 91. DiBartolomeo, A. et al. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors. J. Phys. Condens. Matter 25, 155303 (2013). 92. Song, S. M., Park, J. K., Sul, O. J. & Cho, B. J. Determination of Work Function of Graphene under a Metal Electrode and Its Role in Contact Resistance. Nano Lett. 12, 3887–3892 (2012). 93. Robinson, J. A. et al. Contacting Graphene. Appl. Phys. Lett. 98, 53103 (2011). 94. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Contact Resistivity and Current Flow Path at Metal/Graphene Contact. Appl. Phys. Lett. 97, 143514 (2010). 95. Venugopal, A., Colombo, L. & Vogel, E. M. Contact Resistance in Few and Multilayer Graphene Devices. Appl. Phys. Lett. 96, 13512 (2010). 96. Xia, F., Perebeinos, V., Lin, Y., YanqingWu & Avouris, P. The Origins and Limits of Metal–Graphene Junction Resistance. Nat. Nanotechnol. 6, 179–184 (2011). 97. Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact Resistance in Graphene-Based Devices. Phys. E 42, 677–679 (2010). 98. Khomyakov, P. A. et al. First-Principles Study of the Interaction and Charge Transfer Between Graphene and Metals. Phys. Rev. B 79, 195425 (2009). 99. Watanabe, E., Conwill, A., Tsuya, D. &Koide, Y. Low Contact Resistance Metals for Graphene Based Devices. Diam. Relat. Mater. 24, 171–174 (2012). 100. Chan, J. et al. Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition. ACS Nano 6, 3224–3229 (2012). 101. Franklin, A. D., Han, S.-J., Bol, A. A. & Perebeinos, V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett. 33, 17–19 (2012). 102. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011). 103. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A Chem. 221, 187–193 (2011). 104. Klar, P. et al. Raman Scattering Efficiency of Graphene. Phys. Rev. B 87, 205435 (2013). 105. Xia, W. et al. Recent Progress in Van Der Waals Heterojunctions. Nanoscale 9, 4324–4365 (2017). 106. Harris, D. C. Quantitative Chemical Analysis. (W. H. Freeman, 2007). 107. Zheng, W.-T. & Sun, C. Q. Underneath the Fascinations of Carbon Nanotubes and Graphene Nanoribbons. Energy Environ. Sci. 4, 627–655 (2011). 108. Khan, M. F., Iqbal, M. Z., Iqbal, M. W. & Eom, J. Improving the Electrical Properties of Graphene Layers by Chemical Doping. Sci. Technol. Adv. Mater. 15, 55004 (2014). 109. Zheng, H., Mukherjee, S., Gangopadhyay, K. & Gangopadhyay, S. Ultrafine Pt Nanoparticle Induced Doping/Strain of Single Layer Graphene: Experimental Corroboration Between Conduction and Raman Characteristics. J. Mater. Sci. Mater. Electron. 26, 4746–4753 (2015). 110. Pinto, H. & Markevich, A. Electronic and Electrochemical Doping of Graphene by Surface Adsorbates. Beilstein J. Nanotechnol. 5, 1842–1848 (2014). 111. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and Edge Effects in Graphene Devices. Nat. Nanotechnol. 3, 486–490 (2008). 112. Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science. 342, 614–617 (2013). 113. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970). 114. Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. U. S. A. 94, 4853–4860 (1997). 115. Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 5, 1937–1942 (2005). 116. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004). 117. Bartlett, P. & Henderson, S. Three-dimensional force calibration of a single-beam optical gradient trap. J. physics. Condens. matter 14, 7757–7768 (2002). 118. Urban, A. S., Lutich, A. A., Stefani, F. D. & Feldmann, J. Laser Printing Single Gold Nanoparticles. Nano Lett. 10, 4794–4798 (2010). 119. Hofkens, J. et al. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene-Labeled PNIPAM. J. Am. Chem. Soc. 119, 2741–2742 (1997). 120. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N-isopropylacrylamide) in Aqueous Solution. Langmuir 13, 414–419 (1997). 121. Masuhara, H. et al. Laser-Trapping Assembling Dynamics of Molecules and Proteins at Surface and Interface. Pure Appl. Chem. 83, 869–883 (2011). 122. Rungsimanon, T., Yuyama, K., Sugiyama, T. & Masuhara, H. Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Cryst. Growth Des. 10, 4686–4688 (2010). 123. Rungsimanon, T. et al. Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. J. Phys. Chem. Lett. 1, 599–603 (2010). 124. Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589–5593 (2010). 125. Hajizadeh, F. & S.Reihani, S. N. Optimized Optical Trapping of Gold Nanoparticles. Opt. Express 18, 551–559 (2010). 126. Pan, L., Ishikawa, A. & Tamai, N. Detection of Optical Trapping of CdTe Quantum Dots by Two-Photon-Induced Luminescence. Phys. Rev. B 75, 161305-1-161305–4 (2007). 127. Agate, B., Brown, C., Sibbett, W. & Dholakia, K. Femtosecond Optical Tweezers for In-Situ Control of Two-Photon Fluorescence. Opt. Express 12, 3011–7 (2004). 128. Shane, J. C., Mazilu, M., Lee, W. M. & Dholakia, K. Effect of Pulse Temporal Shape on Optical Trapping and Impulse Transfer Using Ultrashort Pulsed Lasers. Opt. Express 18, 7554–7668 (2010). 129. Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear Optical Effects in Trapping Nanoparticles with Femtosecond Pulses. Nat. Phys. 6, 1005–1009 (2010). 130. Wang, L.-G. & Zhao, C.-L. Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on a Rayleigh Dielectric Sphere. Opt. Express 15, 10615–10621 (2007). 131. Messina, E. et al. Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids. J. Phys. Chem. C 115, 5115–5122 (2011). 132. Bendix, P. M., Jauffred, L., Norregaard, K. & Oddershede, L. B. Optical Trapping of Nanoparticles and Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 20, 4800112 (2014). 133. Miles, R. E. H., Rudié, S., Orr-Ewing, A. J. & Reid, J. P. Influence of Uncertainties in the Diameter and Refractive Index of Calibration Polystyrene Beads on the Retrieval of Aerosol Optical Properties Using Cavity Ring Down Spectroscopy. J. Phys. Chem. A 114, 7077–7084 (2010). 134. Lehmuskero, A., Ogier, R., Gschneidtner, T., Johansson, P. & Käll, M. Ultrafast Spinning of Gold Nanoparticles in Water Using Circularly Polarized Light. Nano Lett. 13, 3129−3134 (2013). 135. Usman, A., Chiang, W.-Y., Uwada, T. & Masuhara, H. Polarization and Droplet Size Effects in the Laser-Trapping-Induced Reconfiguration in Individual Nematic Liquid Crystal Microdroplets. J. Phys. Chem. B 16, 4536–4540 (2013). 136. Wang, L.-G. & Chai, H.-S. Revisit on Dynamic Radiation Forces Induced by Pulsed Gaussian Beams. Opt. Express 19, 14389–14402 (2011). 137. Davis, L. W. Theory of Electromagnetic Beams. Phys. Rev. A 19, 1177–1179 (1979). 138. Harada, Y. & Asakura, T. Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 124, 529–541 (1996). 139. Simpson, S. H. Inhomogeneous and Anisotropic Particles in Optical Traps: Physical Behaviour and Applications. J. Quant. Spectrosc. Radiat. Transf. 146, 81–99 (2014). 140. Phillips, D. B. et al. Shape-induced force fields in optical trapping. Nat. Photonics 8, 400–405 (2014). 141. Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three-Dimensional Optical Control of Individual Quantum Dots. Nano Lett. 8, 3376–3380 (2008). 142. Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, 2006). doi:https://doi.org/10.1017/CBO9780511813535 143. Bloemer, M. J., Haus, J. W. & Ashley, P. R. Degenerate Four-Wave Mixing in Colloidal Gold as a Function of Particle Size. J. Opt. Soc. Am. B 7, 790–795 (1990). 144. Gendron, P.-O., Avaltroni, F. & Wilkinson, K. J. Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. J. Fluoresc. 18, 1093–1101 (2008). 145. Jaquay, E., Martínez, L. J., Mejia, C. A. & Povinelli, M. L. Light-Assisted, Templated Self-Assembly Using a Photonic-Crystal Slab. Nano Lett. 13, 2290–2294 (2013). 146. Khorasani, F. B., Poling-Skutvik, R., Krishnamoorti, R. & Conrad, J. C. Mobility of Nanoparticles in Semidilute Polyelectrolyte Solutions Firoozeh. Macromolecules 47, 5328–5333 (2014). 147. Efstathios E. Michaelides. Nanoparticle Diffusivity in Narrow Cylindrical Pores. Int. J. Heat Mass Transf. 114, 607–612 (2017). 148. Jerome, F. S., Tseng, J. T. & Fan, L. T. Viscosities of Aqueous Glycol Solutions. J. Chem. Eng. Data 13, 496 (1968). 149. Ługowski, R., Kołodziejczyk, B. & Kawata, Y. Application of Laser-Trapping Technique for Measuring the Three-Dimensional Distribution of Viscosity. Opt. Commun. 202, 1–8 (2002). 150. Uwada, T., Sugiyama, T. & Masuhara, H. Wide-Field Rayleigh Scattering Imaging and Spectroscopy of Gold Nanoparticles in Heavy Water Under Laser Trapping. J. Photochem. Photobiol. A Chem. 221, 187–193 (2011). 151. Yguerabide, J. & Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications II. Anal. Biochem. 262, 157–176 (1998). 152. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping and Polarization-Controlled Scattering of Dielectric Spherical Nanoparticles by Femtosecond Laser Pulses. J. Photochem. Photobiol. A Chem. 234, 83–90 (2012). 153. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse-Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182–19188 (2013). 154. Usman, A., Chiang, W.-Y. & Masuhara, H. Femtosecond Trapping Efficiency Enhanced for Nano-sized Silica Spheres. Proc. SPIE 8458, 845833 (2012). 155. Lee, Y.-L., Du, Z.-C., Lin, W.-X. & Yang, Y.-M. Monolayer Behavior of Silica Particles at Air/Water Interface: A Comparison Between Chemical and Physical Modifications of Surface. J. Colloid Interface Sci. 296, 233–241 (2006). 156. Bagwe, R. P., Hilliard, L. R. & Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 22, 4357–4362 (2006). 157. Muramatsu, M., Shen, T.-F., Chiang, W.-Y., Usman, A. & Masuhara, H. Picosecond Motional Relaxation of Nanoparticles in Femtosecond Laser Trapping. J. Phys. Chem. C 120, 5251–5256 (2016). 158. Ito, F., Kogasaka, Y. & Yamamoto, K. Fluorescence Spectral Changes of Perylene in Polymer Matrices during the Solvent Evaporation Process. J. Phys. Chem. B 117, 3675–3681 (2013). 159. Balakrishnan, K. et al. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. J. Am. Chem. Soc. 128, 7390–7398 (2006). 160. Yang, X., Xu, X. & Ji, H. F. Solvent effect on the self-assembled structure of an amphiphilic perylene diimide derivative. J. Phys. Chem. B 112, 7196–7202 (2008). 161. Beckers, E. H. A. et al. Influence of Intermolecular Orientation on the Photoinduced Charge Transfer Kinetics in Self-Assembled Aggregates of Donor-Acceptor Arrays. J. Am. Chem. Soc. 128, 649–657 (2006). 162. Wang, H., Schaefer, K., Pich, A. & Moeller, M. Synthesis of Silica Encapsulated Perylenetetracarboxylic Diimide Core?Shell Nanoellipsoids. Chem. Mater. 23, 4748–4755 (2011). 163. Liu, S.-G., Sui, G., Cormier, R. A., Leblanc, R. M. & Gregg, B. A. Self-Organizing Liquid Crystal Perylene Diimide Thin Films: Spectroscopy, Crystallinity, and Molecular Orientation. J. Phys. Chem. B 106, 1307–1315 (2002). 164. Ribeiro, T., Baleizão, C. & Farinha, J. P. S. Synthesis and Characterization of Perylenediimide Labeled Core−Shell Hybrid Silica−Polymer Nanoparticles. J. Phys. Chem. C 113, 18082–18090 (2009). 165. Tröster, H. Untersuchungen zur Protonierung von Perylen-3,4,9,10- tetracarbonsiiurealkalisalzen. Dye. Pigment. 4, 171–177 (1983). 166. Nagao, Y., Naito, T., Abe, Y. & Misono, T. Synthesis and properties of long and branched alkyl chain substituted perylenetetracarboxylic monoanhydride monoimides. Dye. Pigment. 32, 71–83 (1996). 167. Zhuravlev, L. T. The Surface Chemistry of Amorphous Silica. Zhuravlev Model. Colloids Surfaces A Physicochem. Eng. Asp. 173, 1–38 (2000). 168. Ashkin, A. Acceleration and Trapping of Particle by Radiation Pressure. Phys. Rev. Lett. 24, 156−159 (1970). 169. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 11, 288−290 (1986). 170. Ashkin, A. & Dziedzic, J. M. Optical Trapping and Manipulation of Viruses and Bacteria. Science 235, 1517−1520 (1987). 171. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H., Taniguchi, T. & Miyashita, T. Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene- Labelled PNIPAM. J. Am. Chem. Soc. 119, 2741−2742 (1997). 172. Grier, D. G. A Revolution in Optical Manipulation. Nature 424, 810−816 (2003). 173. Neuman, K. C. & Block, S. M. Optical Trapping. Rev. Sci. Instrum. 75, 2787−2809 (2004). 174. Dholakia, K., Reece, P. & Gu, M. Optical Micromanipulation. Chem. Soc. Rev. 37,42−55 (2008). 175. Sugiyama, T., Yuyama, K. & Masuhara, H. Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Acc. Chem. Res. 45, 1946−1954 (2012). 176. Harada, Y. & Asakura, T. Radiation Force on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 124, 529−541 (1996). 177. Yoshikawa, H., Matsui, T. & Masuhara, H. Reversible Assembly of Gold Nanoparticles Confined in an Optical Microcage. Phys. Rev. E 70, 061406 (2004). 178. Hajizadeh, F. & Reihani, S. N. S. Optimized Optical Trapping of Gold Nanoparticles. Opt. Express 18, 551−559 (2010). 179. Hosokawa, C., Yoshikawa, H. & Masuhara, H. Enhancement of Biased Diffusion of Dye-Doped Nanoparticles by Simultaneous Irradiation with Resonance and Nonresonance Laser Beams. Jpn. J. Appl. Phys. 45, L453−L456 (2006). 180. Shoji, T., Kitamura, N. & T suboi, Y. Resonant Excitation Effect on Optical Trapping of Myoglobin: The Important Role of a Heme Cofactor. J. Phys. Chem. C 117, 10691−10697 (2013). 181. Iida, T. & Ishihara, H. Optically Induced Mechanical Interaction between Semiconductor Quantum Dots under an Electronic Resonance Condition. Phys. A 26, 163−168 (2005). 182. Iida, T. & Ishihara, H. Optically Induced Force between Nano- Particles Irradiated by electronic Resonant Light. J. Lumin. 112, 151−155 (2005). 183. Iida, T. & Ishihara, H. Theory of Resonant Radiation Force Exerted on Nanostructures by Optical Excitation of Their Quantum States: From Microscopic to Macroscopic Descriptions. Phys. Rev. B 77, 245319 (2008). 184. Juan, M. L., Righini, M. & Quidant, R. Plasmon Nano-Optical Tweezers. Nat. Photonics 5, 349−356 (2011). 185. Pan, L., Ishikawa, A. & Tamai, N. Detection of Optical Trapping of CdTe Quantum Dots by Two-Photon-Induced Luminescence. Phys. Rev. B 75, 161305 (2007). 186. Tsuboi, Y., Shoji, T., Kitamura, N., Takase, M., Murakoshi, K., Mizumoto, Y. & Ishihara, H. Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon. J. Phys. Chem. Lett. 1, 2327−2333 (2010). 187. Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three- Dimensional Optical Control of Individual Quantum Dots. Nano Lett. 8, 3376−3380 (2008). 188. Jauffred, L. & Oddershede, L. B. Two-Photon Quantum Dot Excitation during Optical Trapping. Nano Lett. 10, 1927−1930 (2010). 189. Head, C. R., Kammann, E., Zanella, M., Manna, L. & Lagoudakis, P. G. Spinning Nanorods -Active Optical Manipulation of Semi- conductor Nanorods using Polarised Light. Nanoscale 4, 3693− 3697 (2012). 190. Kudo, T. & Ishihara, H. Proposed Nonlinear Resonance Laser Technique for Manipulating Nanoparticles. Phys. Rev. Lett. 109, 087402 (2012). 191. Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear Optical Effects in Trapping Nanoparticles with Femtosecond Pulses. Nat. Phys. 6, 1005−1009 (2010). 192. Shoji, T., Saitoh, J., Kitamura, N., Nagasawa, F., Murakoshi, K., Yamauchi, H., Ito, S., Miyasaka, H., Ishihara, H. & Tsuboi, Y. Permanent Fixing or Reversible Trapping and Release of DNA Micropatterns on a Gold Nanostructure Using Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light. J. Am. Chem. Soc. 135, 6643−6648 (2013). 193. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping and Polarization-Controlled Scattering of Dielectric Spherical Nano- particles by Femtosecond Laser Pulses. J. Photochem. Photobiol., A 234,83−90 (2012). 194. Usman, A., Chiang, W.-Y. & Masuhara, H. Optical Trapping of Nanoparticles with Ultrashort Laser Pulses. Sci. Prog. 96,1−18 (2013). 195. Chiang, W.-Y., Usman, A. & Masuhara, H. Femtosecond Pulse- Width Dependent Trapping and Directional Ejection Dynamics of Dielectric Nanoparticles. J. Phys. Chem. C 117, 19182−19188 (2013). 196. Padilha, L. A., Fu, J., Hagan, D. J. & Van Stryland, E. W. Two- Photon Absorption in CdTe Quantum Dots. Opt. Express 13, 6460−6467 (2005). 197. Cirloganu, C. M., Padilha, L. A., Fishman, D. A., Webster, S., Hagan, D. J. & Van Stryland, E. W. Extremely Nondegenerate Two- Photon Absorption in Direct-Gap Semiconductor. Opt. Express 19, 22951−22960 (2011). 198. Agate, B., Brown, C. T. A., Sibbett, W. & Dholakia, K. Femtosecond Optical Tweezers for In-Situ Control of Two-Photon Fluorescence. Opt. Express 12, 3011−3017 (2004). 199. Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., Eychmuller, A. & Weller, H. Thiol- Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B 106, 7177−7185 (2002). 200. Wolcott, A., Gerion, D., Visconte, M., Sun, J., Schwartzberg, A., Chen, S. & Zhang, J. Z. Silica-Coated CdTe Quantum Dots Function- alized with Thiols for Bioconjugation to IgG Proteins. J. Phys. Chem. B 110, 5779−5789 (2006). 201. Tomasulo, M., Yildiz, I. & Raymo, F. M. pH-Sensitive Quantum Dots. J. Phys. Chem. B 110, 3853−3855 (2006). 202. Mandal, A., Nakayama, J., Tamai, N., Biju, V. & Ishikawa, M. Optical and Dynamic Properties of Water-Soluble Highly Luminescent CdTe Quantum Dots. J. Phys. Chem. B 111, 12765−12771 (2007). 203. Winter, S., Zielinski, M., Chauvat, D., Zyss, J. & Oron, D. The Second-Order Nonlinear Susceptibility of Quantum Confined Semi- conductors-A Single Dot Study. J. Phys. Chem. C 115, 4558− 4563 (2011). 204. Ma, S. M., Seo, J. T., Yang, Q., Battle, R., Brown, H., Lee, K., Creekmore, L., Jackson, A., Skyles, T., Tabibi, B., et al. Third-Order Nonlinear Susceptibility and Hyperpolarizability of CdSe Nanocrystals with Femtosecond Excitation. J. Korean Phys. Soc. 48, 1379− 1384 (2006). 205. Pan, L., Tamai, N., Kamada, K. & Deki, S. Nonlinear Optical Properties of Thiol-Capped CdTe Quantum Dots in Nonresonant Region. Appl. Phys. Lett. 91, 051902 (2007). 206. Dakovski, G. L. & Shan, J. Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots. J. Appl. Phys. 114, 014301 (2013). 207. Szeremeta, J., Nyk, M., Wawrzynczyk, D. & Samoc, M. Wavelength Dependence of Nonlinear Optical Properties of Colloidal CdS QDs. Nanoscale 5, 2388−2393 (2013). 208. ivas, M. G., Cury, J. F., Schiavon, M. A. & Mendonca, C. R. Two-Photon Absorption of ZnS Quantum Dots: Interpreting the Nonlinear Spectrum. J. Phys. Chem. C 117, 8530−8535 (2013). 209. López-Suárez, A., Rangel-Rojo, R., Torres-Torres, C., Benami, A., Tamayo-Rivera, L., Reyes-Esqueda, J. A., Cheang-Wong, J. C., Rodríguez-Fernández, L., Crespo-Sosa, A. & Oliver, A. Enhancement of the Optical Kerr Effect Exhibited by an Integrated Configuration of Silicon Quantum Dots and Silver Nanoparticles. J. Phys.: Conf. Ser. 274, 012145 (2011). 210. Bloemer, M. J., Haus, J. W. & Ashley, P. R. Degenerate of Four- Wave Mixing in Colloidal Gold as a Function of Particle Size. J. Opt. Soc. Am. B 7, 790−795 (1990). 211. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York (1983). 212. Klimov, V. I. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B 104, 6112−6123 (2000). 213. Schaller, R. D. & Klimov, V. I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 186601 (2004). 214. Nozik, A. J. Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion. Inorg. Chem. 44, 6893−6899 (2005). 215. Beard, M. C., Knutsen, K. P., Yu, P., Luther, J. M., Song, Q., Metzger, W. K., Ellingson, R. J. & Nozik, A. J. Multiple Exciton Generation in Colloidal Silican Nanocrystals. Nano Lett. 7, 2506−2512 (2007). 216. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation. Science 324, 1542−1544 (2009). 217. Kobayashi, Y., Pan, L. & Tamai, N. Effects of Size and Capping Reagents on Biexciton Auger Recombination Dynamics of CdTe Quantum Dots. J. Phys. Chem. C 113, 11783−11789 (2009). 218. Wu, F., Lewis, J. W., Kliger, D. S. & Zhang, J. Z. Unusual Excitation Intensity Dependence of Fluorescence of CdTe Nano- particles. J. Chem. Phys. 118,12−16 (2003). 219. Padilha, L. A., Neves, A. A. R., Cesar, C. L., Barbosa, L. C. & Cruz, C. H. B. Recombination Processes in CdTe Quantum-Dot- Doped Glasses. Appl. Phys. Lett. 85, 3256−3258 (2004). 220. Christensen, E. A., Kulatunga, P. & Lagerholm, B. C. A Single Molecule Investigation of the Photostability of Quantum Dots. PLoS One 7, e44355 (2012). 221. Dancus, I., Vlad, V. I., Petris, A., Gaponik, N., Shavel, A. & Eychmuller, A. Nonlinear Optical Properties of CdTe QDs Near the Resonance Regime. J. Optoelectron. Adv. Mater. 10, 149−151 (2008). 222. Chen, J., Chen, X., Xu, R., Zhu, Y., Shi, Y. & Zhu, X. Refractive Index of Aqueous Solution of CdTe Quantum Dots. Opt. Commun. 281, 3578−3580 (2008). 223. Eid, J. et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138 (2009). 224. Uemura, S. et al. Real-Time tRNA Transit on Single Translating Ribosomes at Codon Resolution. Nature 464, 1012–1017 (2010). 225. Lu, H. P., Xun, L. & Xie, X. S. Single-Molecule Enzymatic Dynamics. Science 282, 1877–1882 (1998). 226. Masuhara, H., Sugiyama, T., Yuyama, K. & Usman, A. Optical Trapping Assembling of Clusters and Nanoparticles in Solution by CW and Femtosecond Lasers. Opt. Rev. 22, 143–148 (2015). 227. Berthelot, J. et al. Three-Dimensional Manipulation with Scanning Near-Field Optical Nanotweezers. Nat. Nanotechnol. 9, 295–299 (2014). 228. Andres-Arroyo, A., Gupta, B., Wang, F., Gooding, J. J. & Reece, P. J. Optical Manipulation and Spectroscopy of Silicon Nanoparticles Exhibiting Dielectric Resonances. Nano Lett. 16, 1903–1910 (2016). 229. Li, M., Lohmuller, T. & Feldmann, J. Optical Injection of Gold Nanoparticles into Living Cells. Nano Lett. 15, 770–775 (2015). 230. Lehmuskero, A., Johansson, P., Rubinsztein-Dunlop, H., Tong, L. & Käll, M. Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano 9, 3453–3469 (2015). 231. Kang, Z. et al. Trapping and Assembling of Particles and Live Cells on Large-Scale Random Gold Nano-Island Substrates. Sci. Rep. 5, 1–8 (2015). 232. Huang, J.-S. & Yang, Y.-T. Origin and Future of Plasmonic Optical Tweezers. Nanomaterials 5, 1048–1065 (2015). 233. Enders, M., Mukai, S., Uwada, T. & Hashimoto, S. Plasmonic Nanofabrication through Optical Heating. J. Phys. Chem. C 120, 6723–6732 (2016). 234. Ohlinger, A., Nedev, S., Lutich, A. A. & Feldmann, J. Optothermal Escape of Plasmonically Coupled Silver Nanoparticles from a Three-Dimensional Optical Trap. Nano Lett. 11, 1770–1774 (2011). 235. Li, G.-C., Zhang, Y.-L., Jiang, J., Luo, Y. & Lei, D. Y. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. ACS Nano 11, 3067−3080 (2017). 236. Zhang, T., Gao, N., Li, S., Lang, M. J. & Xu, Q. H. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. J. Phys. Chem. Lett. 6, 2043–2049 (2015). 237. Annink, C. & Gill, R. Nanoparticle Aggregate-Based Fluorescence Enhancement for Highly Sensitive and Reproducible Detection of DNA. Part. Part. Syst. Charact. 31, 943–947 (2014). 238. Gill, R., Tian, L., vanAmerongen, H. & Subramaniam, V. Emission Enhancement and Lifetime Modification of Phosphorescence on Silver Nanoparticle Aggregates. Phys. Chem. Chem. Phys. 15, 15734--15739 (2013). 239. Dulkeith, E. et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 89, 203002 (2002). 240. Xue, C., Xue, Y., Dai, L., Urbas, A. & Li, Q. Size- and Shape-Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye. Adv. Opt. Mater. 1, 581–587 (2013). 241. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 96, 113002 (2006). 242. Setoura, K., Ito, S. & Miyasaka, H. Stationary Bubble Formation and Marangoni Convection Induced by CW Laser Heating of a Single Gold Nanoparticle. Nanoscale 9, 719–730 (2017). 243. Li, Y., Zhoua, K., Tor, S. B., Chuaa, C. K. & Leong, K. F. Heat Transfer and Phase Transition in the Selective Laser Melting Process. Int. J. Heat Mass Transf. 108, 2408–2416 (2017). 244. Li, Y., Zhou, K., Tor, S. B., Chua, C. K. & Leong, K. F. Heat Transfer and Phase Transition in the Selective Laser Melting Process. Int. J. Heat Mass Transf. 108, 2408–2416 (2017). 245. Aibara, I., Chikazawa, J., Uwada, T. & Hashimoto, S. Localized Phase Separation of Thermoresponsive Polymers Induced by Plasmonic Heating. J. Phys. Chem. C 121, 22496−22507 (2017). 246. Adelmann, B. & Hellmann, R. A Study of SiC Decomposition under Laser Irradiation. Appl. Phys. A 123, 454 (2017). 247. Guay, J.-M. et al. Polarization-Dependent Femtosecond Laser Ablation of Poly-Methyl Methacrylate. New J. Phys. 14, 85010-1-85010–16 (2012). 248. Ito, S. et al. Confinement of Photopolymerization and Solidification with Radiation Pressure. J. Am. Chem. Soc. 133, 14472–14475 (2011).
|