( 您好!臺灣時間:2024/06/17 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Lin, Huei-Ru
論文名稱:以oaR-TOF MS結合軟X光探討氣相Gly−Phe與Phe−Gly選擇性斷鍵的可能性以及氣膠質譜儀的設計
論文名稱(外文):Analysis of the possibility of specific dissociation of gas phase Gly−Phe and Phe−Gly by oaR-TOF MS combined with soft X-ray and the design of the aerosol mass spectrometer
指導教授(外文):Cheng, Yen-JuLiu, Chen-Lin
口試委員(外文):Liu, Chen-LinCheng, Yen-JuWang, Niann-Shiah
外文關鍵詞:Gly-Phe&Phe-GlySpecific DissociationNEXAFSoaR-TOF MS
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含了兩個工作:第一部分是利用本實驗團隊自行建造的一套垂直加速反射式飛行時間質譜儀(oaR-TOF MS)結合同步輻射光軟X光光源可調變的光能量的特性。分析互為同分異構物(isomer)的Gly−Phe與Phe−Gly二胜肽(dipeptide)結構作為此研究的目標;以近緣X光吸收細微結構 (Near-Edge X-ray Absorption Fine Structure,NEXAFS)光譜技術提供吸收原子的電子結構並呈現靈敏的化學環境分析。隨著光能量的變化偵測到的總離子產率(total ion yield,TIY),以各離子的訊號強度與碎片離子的branching ratio,探討Gly−Phe與Phe−Gly選擇性斷鍵(specific dissociation)的機制。並由激發碳原子的內層電子歸納出三個代表性的吸收特性,當中包含了具有芳香環的側鏈基、羰基(carbonyl group)以及Phenylalanine側鏈基碳原子的激發,其光譜特性分別為πC=C*(Cring)、πC=O*以及未飽和鍵結的碳原子混合Phenylalanine側鏈基上飽和鍵結的碳原子σ C-H*的激發。
第二個部分為氣膠(aerosol)進樣系統(intet)的設計、系統組裝與進樣源穩定所需時間的測試,並以分段抽氣系統(differential pumping system)控制偵測腔體(detection chamber)的真空度。設計此系統的目的,主要是為了解決生物分子(biomolecules)在氣化過程中產生的熱分解的現象,以及長時間曝露在高強度的同步輻射光源可能產生的輻射傷害(radiation demage)。氣膠進樣(inlet)方式是透過氣動聚焦系統(aerodynamic lens,ADL) 使氣膠粒子匯聚成束,形成一平行且發散角度極小的氣膠進樣源,結合特殊設計的加熱載台達到瞬間汽化為主要的目標。粒徑分析的實驗,顯示濃度的樣品溶液在不呈正比的情況下,氣膠微粒濃度仍具有其穩定性(至少能維持四小時以上)。
Two works are included in this thesis: The first part is to use an orthogonal acceleration reflectron time-of-flight mass spectrometer and soft X-rays from synchrotron radiation to measure near-edge X-ray absorption fine structure (NEXAFS) spectra of carbon atoms in dipeptide isomers, Gly−Phe and Phe−Gly. NEXAFS spectroscopy has been proved to provide a sensitive technique for determining the electronic structure of matter accurately and for chemical analysis. The NEXAFS spectra were recorded in the vicinity of the carbon K-edge, and the specific dissociation of Gly-Phe and Phe-Gly were explored based on the signal intensity of each product ion and the branching ratio of fragments. Three kinds of absorption properties were deduced according to the core electrons of the specific carbon atoms. They included aromatic rings, carbonyl groups and the side chain of Phenylalanine. Their assignment were πC = C* (Cring)、πC = O* and the mixing of σC-H* of the saturated bonding carbon atoms on the Phenylalanine side chain and the unsaturated bonding carbon atoms repectively.
The second part is the design, assembling and sample source stability testing of the aerosol injection system. Such differential pumping plays an important role to the injection devices and the real pressures is the vacuum chambers. In differential pumping mathematics and measured results, the difference is between the values of evaluated 3.9×10-7 Torr and the 1.6×10-6 Torr of detection chamber pressure. Besides, the assembly of aerodynamic lens (ADL) to converge aerosol particles into bundles, which are instantaneously vaporized by a fast heat conduction effect occurs with a collimated particle beam. ADL also can solve the problem of thermal instability of nonvolatile biomolecules. The stability of particle size should be remained at long-term maintain. In the case of disproportionate aerosol particle concentration, it is found that the concentration of aerosol is not a factor affecting the stability. The stability of the aerosol concentration could last for more than four hours.
摘要 i
致謝 v
目錄 vi
圖目錄 viii
表目錄 viii
一、緒論 1
1. 1引文 1
1. 2未來目標 4
二、原理與技術 5
2. 1選擇性斷鍵 5
2. 2近緣X光吸收細微結構 10
2. 3同步輻射光源 16
2. 4飛行時間質譜儀 21
2. 4. 1飛行時間質譜儀的發展與原理 21
2. 4. 2提高飛行時間質譜儀解析度之策略 22
三、實驗藥品、儀器設備與系統架設 26
3. 1實驗藥品與試劑 26
3. 2垂直加速反射式飛行時間質譜儀之架設 27
3. 3訊號擷取系統 32
3. 4質譜儀進樣源之設計 33
3. 4. 1固相揮發系統進樣源 33
3. 4. 2氣膠進樣系統 34
3. 5真空系統 37
3. 6實驗步驟 38
3. 6. 1樣品製備與實驗之前處理 38
3. 6. 2NEXAFS光譜與質譜量測 38
3. 7分子加熱測試方法 41
3. 8氣膠濃度與粒徑分布之量測方法 42
四、結果與討論 44
4.1Gly−Phe與Phe−Gly加熱測試結果 44
4.2Gly−Phe與Phe−Gly之的NEXAFS光譜分析 48
4.3Gly−Phe與Phe−Gly選擇性斷鍵的可能性 55
4.4氣膠系統的架設 63
4.5氣膠粒徑分析 69
五、結論 74
參考文獻 76
1. Y. Zubavichus, et al. “X-ray Absorption Spectroscopy of the Nucleotide Bases at the Carbon, Nitrogen, and Oxygen K-Edges”, J. Phys. Chem. B, 112, pp. 13711-13716, 2008.
2. O. Plekan, et al. “Photoemission Study of Thymidine Adsorbed on Au(111) and Cu(110)”, J. Phys. Chem. C, 114, pp. 15036-15041, 2010.
3. O. Plekan, et al. “An Experimental and Theoretical Core-Level Study of Tautomerism in Guanine”, J. Phys. Chem. A, 113, pp. 9376-9385, 2009.
4. W. Hua, et al. “Refinement of DNA Structures through Near-Edge X-ray Absorption Fine Structure Analysis: Applications on Guanine and Cytosine Nucleobases, Nucleosides, and Nucleotides”, J. Phys. Chem. B, 114, pp. 13214-13222, 2010.
5. C. J. May , H. E. Canavan, and D. G. Castner, “Quantitative X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry Characterization of the Components in DNA”,Anal. Chem., 76, pp. 1114-1122, 2004.
6. D. T. Ha, et al. “Experimental and ab initio study of the photofragmentation of DNA and RNA sugars”, Phys. Rev. A, 84, pp. 033419, 2011.
7. E. Itälä, et al. “Fragmentation patterns of core ionized uracil”, Int. J. Mass Spectrom., 306, pp. 82-90, 2011.
8. A. C. Cefalas, and E. Sarantopoulou, “157nm photodissoeiation of polyamides”, Microelectron. Eng., 53, pp. 465-468, 2000.
9. T. Coffey, S.G. Urquhart, and H. Ade, “Characterization of the effects of soft X-ray irradiation on polymers”,J. Electron Spectrosc. Relat. Phenom., 122, pp. 65-78, 2002.
10. M. Said, et al. “Investigation of ultra violet (UV) resistance for high strength fibers”, Adv. Space Res., 37, pp. 2052-2058, 2006.
11. M. Diepens, and P. Gijsman, “Photodegradation of bisphenol A polycarbonate”,Polym. Degrad. Stab.,92, pp. 397-406, 2007.
12. Y.-S. Lin, et al. “Highly Selective Dissociation of a Peptide Bond Following Excitation of Core Electrons”, J. Phys. Chem. A, 119, pp. 6195-6202, 2015.
13. W. Eberhardt, et al. “Site-Specific Fragmentation of Small Molecules Following Soft-X-Ray Excitation”, Phys. Rev. Lett., 50, pp. 1038-1041, 1983.
14. S.-I. Wada, et al. “Selective chemical bond breaking characteristically induced by resonant core excitation of ester compounds on a surface”, J. Phys.-Condes. Matter, 18, pp. S1629-S1653, 2006.
15. T. Ibuki, et al. “Molecular size effect on the site-specific fragmentation of N and O K shell excited CH3OCOCN and CH3OCOCH2CN molecules”, J. Electron Spectrosc. Relat. Phenom., 107, pp. 39-47, 2000.
16. R. R. Cooney, and S. G.Urquhart, “Chemical Trends in the Near-Edge X-ray Absorption Fine Structure of Monosubstituted and Para-Bisubstituted Benzenes”, J. Phys. Chem. B, 108, pp. 18185-18191, 2004.
17. V. Feyer, et al. “Core Level Study of Alanine and Threonine”, J. Phys. Chem. A, 112, pp. 7806-7815, 2008.
18. A. Lindh, and Z.Physik, “Zur Kenntnis des Röntgenabsorptionsspektrums von Chlor”, Z. Phys., 6, pp. 303-310, 1921.
19. M. Siegbahn, Spektroskopie der Röntgenstrahlen, Julius Springer-Verlag, Berlin, 1931.
20. W. Eberhardt, et al. “Correlation between Electron Emission and Fragmentation into Ions following Soft-X-Ray Excitation of the N2 Molecule”, Phys. Rev. Lett., 51, pp. 2370-2373, 1983.
21. S.-I. Wada, et al. “Active control of chemical bond scission by site-specific core excitation”, Surf. Sci., 528, pp. 242-248, 2003.
22. J. M. Chen, et al. “State Selective Enhanced Production of Excited Fragments and Ionic Fragments of Gaseous Si(CH3)2Cl2 and Solid-State Analogs following Core-Level Excitation”, Phys. Rev. Lett., 92,pp. 243002, 2004.
23. S.-I.Nagaoka, et al. “Site-specific fragmentation caused by core-level photoexcitation: Comparison between Si:1s and 2p photoexcitations in F3SiCH2CH2Si(CH3)3 vapor”, Int. J. Mass Spectrom., 247, pp. 101-105, 205.
24. Y. Baba, “Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges”, Low Temp. Phys., 29, pp. 228-242, 2003.
25. H. C. Schmelz, et al. “Site‐selective fragmentation in core‐excited bromo‐chloro‐alkanes [Br(CH2)nCl]”, J. Chem. Phys., 101, pp. 3742-3749, 1994.
26. I. Nenner, et al. “Site Selective Fragmentation with Soft X-rays: From Gaseous Polyatomic Molecules, Free Clusters, Polymers, Adsorbates to Biological Macromolecules”, Z. Phys., 195, pp. 43-63, 1996.
27. C. Miron, et al. “Site-Selective Photochemistry of Core Excited Molecules: Role of the Internal Energy”, Phys. Rev. Lett., 81, pp. 4104-4107, 1998.
28. A. N. d. Brito, et al. “Memories of excited femtoseconds: effects of core–hole localization after Auger decay in the fragmentation of ozone”, Chem. Phys. Lett., 328, pp.177-187, 2000.
29. E. Kukk, et al. “Dissociation of deuteromethane following carbon 1s core ionization”, Phys. Rev. A, 66, pp. 012704, 2002.
30. X. J. Liu, et al. “Site-selective ion production of the core-excited CH3F molecule probed by Auger-electron–ion coincidence measurements”,Phys. Rev. A, 72, pp. 042704, 2005.
31. G. Prümper, et al. “3D-ion-momentum/high-resolution-electron coincidence measurements”, J. Electron Spectrosc. Relat. Phenom., 144-147, pp. 227-230,2005.
32. R. N. S. Sodhi, and C. E.Brion, “Reference energies for inner shell electron energy-loss spectroscopy”, J. Electron Spectrosc. Relat. Phenom., 34, pp. 363-372, 1984.
33. J. Laksman, et al. “Dissociation Pathways in the Cysteine Dication after Site-Selective Core Ionization”, J. Phys. Chem. B, 118, pp. 11688-11695, 2014.
34. M. Yamashitat, and J. B. Fenn, “Electrospray Ion Source. Another Variation on the Free-Jet Theme”, J. Phys. Chem., 88, pp. 4451-4459, 1984.
35. J. B. Fenn, “Electrospray Wings for Molecular Elephants”, Angew. Chem.-Int. Edit., 42,pp. 3871-3894, 2003.
36. K. Tanaka, et al, “Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry”,Rapid Commun. Mass Spectrom., 2, pp. 151-153, 1988.
37. S.-I. Wada, et al. “Selective chemical bond breaking characteristically induced by resonant core excitation of ester compounds on a surface”, J. Phys.-Condes. Matter, 18, pp. S1629-S1653, 2006.
38. Y.-S. Lin, et al. “Near-Edge X-ray Absorption Fine Structure Spectra and Site-Selective Dissociation of Phenol”, J. Phys. Chem. A, 118, pp. 1601-1609, 2014.
39. G. Hähner, “Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids”, Chem. Soc. Rev., 35, pp. 1244-1255, 2006.
40. B. Watts, L. Thomsen, P.C. Dastoor, J. ElectronSpectrosc. Relat. Phenom., “Methods in carbon K-edge NEXAFS: Experiment and analysis”, 151, pp. 105-120, 2006.
41. E. Kobayashi, et al. “Recent progress in coincidence studies on ion desorption induced by core excitation”, J. Phys.-Condes. Matter, 18, pp. S1389-S1408, 2006.
42. W. Habenicht, et al. “Memory effects in molecular fragmentation induced by site-specific core excitation using a reflection time-of-flight mass spectrometer”, J. Phys. Chem., 95, pp. 6774–6780, 1991.
43. O. Takahashi, et al. “Theoretical studies on the molecular dependence of bond dissociation after core excitations II: CH3CO(CH2)nCN, n = 0–3”, J. Comput. Chem., 24, pp. 1329-1335, 2003.
44. O. Takahashi, et al. “Theoretical studies on the molecular dependence of the bond dissociation after the core excitations. CH3OCO(CH2)nCN, n=0, 1, 2”, J. Electron Spectrosc. Relat. Phenom., 120, pp. 137-148, 2001.
45. T. Sekitani, et al. “Control of chemical bond scission by using site-specific photochemical surface reactions”, J. Electron Spectrosc. Relat. Phenom., 101-103, pp. 135-140, 1999.
46. I. H. Suzuki, and N.Saito, “Energy dependences of fragment ion yields from acetone photoexcited in the C1s and O1s transition regions”, Chem. Phys., 253, pp. 351-359, 2000.
47. C.-W. Liang, et al. “Ionizing nonvolatile samples using laser desorption–proton-transfer reaction with cluster reagent ions”, Int. J. Mass Spectrom., 291, pp. 61-66, 2010.
48. K. Fujii, et al. “X-ray absorption near edge structure of DNA basesaround oxygen and nitrogen K-edge”,Nucl. Instr. and Meth.,Phys. Res. B, 199, pp. 249–254, 2003.
49. C.-W. Liang,et al. “High Ion Yields of Carbohydrates from Frozen Solution by UV-MALDI”, Anal. Chem., 84, pp. 3493-3499, 2012.
50. C. W. Liang, et al. “MALDI Mechanism of Dihydroxybenzoic Acid Isomers: Desorption of Neutral Matrix and Analyte”, J. Phys. Chem. B, 117, pp. 5058-5064, 2013.
51. I.-C. Lu, et al. “Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization”, Annu. Rev. Anal. Chem., 8, pp. 21-39, 2015.
52. Y. Zubavichus, et al. “NEXAFS spectroscopy of biological molecules: From amino acids to functional proteins”, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 603, pp.111-144, 2009.
53. M. L. Gordon, et al. “Inner-Shell Excitation Spectroscopy of the Peptide Bond:  Comparison of the C 1s, N 1s, and O 1s Spectra of Glycine, Glycyl-Glycine, and Glycyl-Glycyl-Glycine”, J. Phys. Chem. A, 107, pp. 6144-6159, 2003.
54. A. R. Milosavljević, et al. “Gas-Phase Protein Inner-Shell Spectroscopy by Coupling an Ion Trap with a Soft X-ray Beamline”, J. Phys. Chem. Lett., 3, pp. 1191-1196, 2012.
55. M. Guilhaus, D. Selby, and V.Mlynski, “Orthogonal acceleration time-of-flight mass spectrometry”, Mass Spectrom. Rev., 19, pp. 65-107, 2000.
56. J. Coles, and M.Guilhaus, “Orthogonal acceleration — a new direction for time-of-flight mass spectrometry: Fast, sensitive mass analysis for continuous ion sources”, Trac-Trends Anal. Chem., 12, pp. 203-213, 1993.
57. J. H. J. Dawson, and M.Guilhaus, “Orthogonal-acceleration time-of-flight mass spectrometer”, Rapid Commun. Mass Spectrom., 3, pp. 155-159, 1989.
58. D. S. Selby, V.Mlynski, and M.Guilhaus, “A 20 kV orthogonal acceleration time-of-flight mass spectrometer for matrix-assisted laser desorption/ionization”, Int. J. Mass Spectrom., 210-211, pp. 89-100, 2001.
59. S. C. Chung, et al. “Performance of an elliptically polarized undulator beamline”, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 467-468, pp. 445-448, 2001.
60. T. K. Sham, et al. “K-edge near-edge x-ray-absorption fine structure of oxygen- and carbon-containing molecules in the gas phase”, Phys. Rev. A, 40, pp. 652-669, 1989.
61. G. Vall-llosera, et al. “Photofragmentation of 2-Deoxy-D-Ribose Molecules in the Gas Phase”, ChemPhysChem, 9, pp. 1020-1029, March 2008.
62. M. Tronc, G. C.King, and F. H.Read, “Carbon K-shell excitation in small molecules by high-resolution electron impact”, J. Phys. B: At. Mol. Phys., 12, pp.137-157, 1979.
63. M. Tronc, G. C.King, and F. H. Read, “Nitrogen K-shell excitation in N2, NO and N2O by high-resolution electron energy-loss spectroscopy”, J. Phys. B: At. Mol. Phys., 13, pp.999-1008, 1980.
64. G. R. Wight, and C. E.Brion, “K-Shell energy loss spectra of 2.5 keV electrons in CO2 and N2O”, J. Electron Spectrosc. Relat. Phenom., 3, pp. 191-205, 1974.
65. R. R. Cooney, and S. G.Urquhart, “Chemical Trends in the Near-Edge X-ray Absorption Fine Structure of Monosubstituted and Para-Bisubstituted Benzenes”, J. Phys. Chem. B, 108, pp. 18185-18191, 2004.
66. J. Stöhr, NEXAFS Spectroscopy, Springer-Verlag, New York, 1992.
67. 劉毅志,簡源震,「粒子加速器的原理與應用」,國家同步輻射研究中心科學發展之專題報導,第514 期,14-19 頁,2015 年。
68. 有關同步加速器光源亮度的資訊,請至國家同步輻射中心所網頁查詢(http://www.nsrrc.org.tw/chinese/lightsource.aspx)。
69. S.-C. Chung, et al. “A high-performance wide-range beamline for elliptically polarized undulator source”, J. Synchrot. Radiat., 5, pp. 551-553, 1998.
70. M. Guilhaus, V.Mlynski, and D.Selby, “Perfect Timing: Time-of-flight Mass Spectrometry”, Rapid Commun. Mass Spectrom., 11, pp. 951-962, 1997.
71. B. A. Mamyrin, et al. “The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution”, Sov. Phys.JETP, 37, pp. 45-48, 1973.
72. B. Spengler, “Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules”, Int. J. Mass Spectrom., 32, pp. 1019-1036, 1997.
73. V. V. Laiko, M. A. Baldwin, and A. L. Burlingame, “Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry”, Anal. Chem., 72, pp. 652-657, 2000.
74. I-Y.Chen, National Sun Yat-sen university, Master thesis, “Developing a novel multi-functional aerosol instrument and using it to characterize the energetic structures and dynamic properties of nano-structured aerosols”, 2013.
75. K. Kaznacheyev, A. Osanna, and C. Jacobsen, “Innershell Absorption Spectroscopy of Amino Acids”, J. Phys. Chem. A, 106, pp. 3153-3168, 2002.
76. J. T. Francis, and A. P.Hitchcock, “Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures”, J. Phys. Chem., 96, pp. 6598-6610, 1992.
77. J. Hasselström, et al. “The adsorption structure of glycine adsorbed on Cu (110); comparison with formate and acetate Cu (110)”, Surf. Sci., 407, pp. 221-236, 1998.
78. M. Nyberg, et al. “The electronic structure and surface chemistry of glycine adsorbed on Cu (110)”, J. Chem. Phys., 112, pp. 5420-5427, 2000.
79. V. Feyer, et al. “Photoemission and Photoabsorption Spectroscopy of Glycyl-Glycine in the Gas Phase”, J. Phys. Chem. A, 113, pp. 10726-10733, 2009.
80. J Boese, et al. “Carbon edge XANES spectroscopy of amino acids and peptides”, J. Electron Spectrosc. Relat. Phenom., 85, pp. 9-15, 1997.
81. Y.-S. Lin, et al. “Core Excitation, Specific Dissociation, and the Effect of the Size of Aromatic Molecules Connected to Oxygen: Phenyl Ether and 1,3-Diphenoxybenzene”, J. Phys. Chem. A, 118, pp. 7803–7815, 2014.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
1. 萘并雙三唑之寬能隙共軛高分子之合成與鑑定及其在有機太陽能電池之應用
2. 利用具自組裝功能之三甘醇、四甘醇、五甘醇分子作為陰極介面修飾層與含D:A1:A2三元混摻之主動層於反式有機太陽能電池之應用
3. 5,6-雙氟-2,1,3-苯并噻二唑與硒吩之高結晶性共軛高分子之合成與鑑定及其於有機太陽能電池之應用
4. 苯基三噻吩為主體之予體-受體共聚物的合成與性質鑑定:氟化效應及其於有機太陽能電池之應用
5. 三環架橋雙硒吩與苯并三(硫族吩)之合成、性質分析與其高分子於有機太陽能電池及有機場效電晶體之應用
6. 以芴為主體之五環與九環熔合梯型分子:合成、鑑定及其於非富勒烯有機太陽能電池之應用
7. 含硒吩之萘并二(噻二唑)共軛高分子之合成、鑑定及其共軛高分子於有機太陽能電池之應用
8. 以芴為主體所形成五與七環熔合梯型分子之合成、鑑定及其共軛高分子於有機太陽能電池與有機場效電晶體之應用
9. 功能性碳六十衍生物與聚硫族吩高分子其合成、分子性質與固態薄膜堆疊於光電元件之影響
10. 角形雙噻吩稠四苯之合成與光二聚反應研究; 非預期合成之新型四環平面雙噻吩并環戊二烯吡喃與二苯并環戊二烯吡喃
11. 設計合成(1)雙烷基角形β萘并雙噻吩;(2)炔基引入之噻吩乙烯基噻吩與(3)雙馬來醯亞胺萘并雙噻吩單體及其予體-受體共聚物於有機光伏元件與電晶體之應用
12. 角形稠四苯衍生物之光二聚化反應及其位向和立體選擇性
13. 臺灣上市櫃IC設計廠商之人力資本效率:網絡資料包絡分析法之應用
14. 離子摻雜之交聯三芳香胺基電洞傳輸材料與含雙五氟苯基之穩定形貌添加劑於高分子太陽能電池之應用
15. 新型六環平面梯狀分子二茚噻吩并噻吩與四環平面烷基化角形萘并雙噻吩之合成、鑑定與高分子太陽能電池之應用