跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/17 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳子為
研究生(外文):Chen, Tze-Wei
論文名稱:在GPU上對於14種布拉菲晶格的三維馬克斯威爾方程的計算
論文名稱(外文):Computing Maxwell's equations for 14 Bravais lattice on GPUs
指導教授:林文偉林文偉引用關係
指導教授(外文):Lin, Wen-Wei
口試委員:林文偉黃聰明吳金典
口試委員(外文):Lin, Wen-WeiHuang, Tsung-MingWu, Chin-Tien
口試日期:2018-06-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系數學建模與科學計算碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:161
中文關鍵詞:能帶結構馬克斯威爾方程式圖形處理器統一計算架構
外文關鍵詞:band structureMaxwell equationGPUCUDA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究光子晶體的能代結構是現今很重要的課題,其中,尋找光子能隙是了解光子晶體特性很重要的關鍵。事實上,我們可以藉由解馬克斯威爾方程去算出光子晶體的能帶結構,進而找出光子能隙,依著Yee’s scheme和時間諧波的條件去離散化馬克斯威爾方程式,將之轉換成一個廣義的特徵值問題,再對旋度算子進行特徵分解,如此便可得到一個標準的特徵值問題。由於考慮的是在三維空間中的馬克斯威爾方程式,此問題的矩陣大小將會隨著離散網格大小的三次方成長,因此需要花費很多的時間去解這個特徵值問題,不過現今我們可以利用GPU來縮短解這些問題的時間:對於一個七百萬乘七百萬大小的特徵值問題,我們平均僅需要83.0915秒便可找到十個最靠近零的特徵值。本論文的重點就是介紹這些使用到GPU的CUDA程式用途以及整個程式執行的流程,及如何從選定的材料形狀開始結合MATLAB和CUDA程式算出能帶結構。此外,在三維空間中總共有14種布拉菲晶格,每一種材料都是按照其中某種晶格規則排列而成的,而我們這套程式包可以解決所有晶格材料的特徵值問題。最後,我們展現許多不同材料的能帶結構,並分析能帶結構是如何隨著形狀和介電係數的變化而改變。
Studying the band structure is an important thing for photonic crystal, and finding the band gap is a key point to understand the feature of the photonic crystal. Solving Maxwell's equation can be used to plot the band structure of the photonic crystal and can observe the existence and the width of the band gap. With the Yee's scheme and the Bloch theorem assumption, we can change the Maxwell's equation into a generalized eigenvalue problem (GEP). Next, we do the singular value decomposition (SVD) of the single curl operator so that we can obtain a standard eigenvalue problem (SEP). Since we consider the Maxwell's equation in three dimensional(3D) space, the matrix will grow cubicly as the grid size increase. It may take lots time for solving the eigenvalue problem, also. Despite of that, we could use the graphics processing unit (GPU) to solve the problem and it could save lots of time. For example, we could find ten smallest eigenvalues for the standard eigenvalue problem with five million matrix size in only 83 seconds averagely. In this research, we focus on introducing the function of these CUDA codes and the whole progress from choosing the crystal shape to plotting the band structure using this package including Matlab codes and CUDA codes. On the other hand, there are 14 different Bloch lattice and each crystal shape will be formed in some lattice type. This package could solve the eigenvalue problem for all lattice types. The other thing is that we show a lot of band structures for different material shapes in different lattice types. Also, we have found some facts about the changing of band structures with the change of the material shape and the permittivity.
Chpater 1 Introduction Page:1
Chpater 2 Background Page:3
Chpater 2.1 Bravais lattice Page:3
Chpater 2.2 Brillouin zone Page:7
Chpater 2.3 Yee's Scheme Page:8
Chpater 2.4 Explicit matrix representation of curl operator Page:10
Chpater 2.5 Singular value decomposition of single curl Page:11
Chpater 2.6 Eigenvalue problem of Maxwell equation Page:14
Chpater 3 Document Page: 15
Chpater 3.1 Flow chart Page: 15
Chpater 3.2 Structures Page: 15
Chpater 3.2.1 PC PARA Page: 16
Chpater 3.2.2 LS INFO Page: 17
Chpater 3.2.3 EV INFO Page: 18
Chpater 3.2.4 LSEV INFO Page: 18
Chpater 3.2.5 MTX LDA Page: 18
Chpater 3.2.6 MTX LAMDA Page: 18
Chpater 3.2.7 dMTX INVB Page: 19
Chpater 3.2.8 dPC MTX Page: 19
Chpater 3.2.9 LANCZOS BUFFER Page: 20
Chpater 3.2.10 CG BUFFER Page: 20
Chpater 3.2.11 FFT BUFFER Page: 21
Chpater 3.2.12 CULIB HANDLES Page: 21
Chpater 3.2.13 VEC 3 Page: 21
Chpater 3.2.14 LatticeConstant Page: 22
Chpater 3.3 Functions Page: 22
Chpater 3.3.1 set PCpara.cpp Page: 22
Chpater 3.3.2 set LSEVinfo.cpp Page: 23
Chpater 3.3.3 set invB.cpp Page: 23
Chpater 3.3.4 set aniso matrix.cpp Page: 24
Chpater 3.3.5 get PCegval gpu.cpp Page: 24
Chpater 3.3.6 LatticeVector.cpp Page: 25
Chpater 3.3.7 AngleCorrection.cpp Page: 26
Chpater 3.3.8 get blochWaves.cpp Page: 27
Chpater 3.3.9 PC Create.cu Page: 27
Chpater 3.3.10 getMtx PCmtx gpu.cu Page: 28
Chpater 3.3.11 getMtx Lda gpu.cu Page: 30
Chpater 3.3.12 getMtx Dam gpu.cu Page: 30
Chpater 3.3.13 getMtx invB gpu.cu Page: 31
Chpater 3.3.14 evSolver IPLM gpu.cpp Page: 32
Chpater 3.3.15 invLanczos gpu.cu Page: 33
Chpater 3.3.16 Lanczos decomp gpu.cu Page: 35
Chpater 3.3.17 lsSolver Ar gpu.cu Page: 36
Chpater 3.3.18 cg QBQ gpu.cu Page: 37
Chpater 3.3.19 spMV QBQ gpu.cu Page: 38
Chpater 3.3.20 spMV fastT gpu.cu Page: 39
Chpater 3.3.21 Lanczos LockPurge gpu.cu Page: 40
Chpater 3.3.22 GVqrrq g.cpp Page: 40
Chpater 3.3.23 PC Destroy.cu Page: 41
Chpater 4 Numerical result Page: 43
Chpater 4.1 Band structure with the change of the size of ball Page: 43
Chpater 4.2 Band structure with the change of the cylinder radius Page: 45
Chpater 4.3 Band structure with the change of permittivity Page: 48
Chpater 4.4 Cost time with the change of the calculation size Page: 50
Chpater 4.5 Band structure Page: 51
Chpater 5 Appendix Page: 152
Chpater 5.1 How to implement FAME on GPU Page: 152
Chpater 5.1.1 Create the files from Matlab Page: 152
Chpater 5.1.2 Using CUDA codes to solve the problem Page: 155
Chpater 5.1.3 Plot the band structure Page: 155
[1] Mois I Aroyo, Asen Kirov, Cesar Capillas, JM Perez-Mato, and Hans Wondratschek. Bilbao crystallographic server. ii. representations of crystallographic point groups and space groups. Acta Crystallographica Section A: Foundations of Crystallography, 62(2):115-128, 2006.
[2] Ruey-Lin Chern, Han-En Hsieh, Tsung-Ming Huang, Wen-Wei Lin, and Weichung Wang. Singular value decompositions for single-curl operators in three dimensional maxwell's equations for complex media. SIAM Journal on Matrix
Analysis and Applications, 36(1):203-224, 2015.
[3] James A Dolan, Bodo D Wilts, Silvia Vignolini, Jeremy J Baumberg, Ullrich Steiner, and Timothy D Wilkinson. Optical properties of gyroid structured materials:
from photonic crystals to metamaterials. Advanced Optical Materials, 3(1):12-32, 2015.
[4] F Garca-Santamara, C Lopez, F Meseguer, F Lopez-Tejeira, J Sanchez-Dehesa, and HT Miyazaki. Opal-like photonic crystal with diamond lattice. Applied Physics Letters, 79(15):2309-2311, 2001.
[5] Tsung-Ming Huang, Han-En Hsieh, Wen-Wei Lin, and Weichung Wang. Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three-dimensional photonic crystals. SIAM Journal on Matrix Analysis and Applications, 34(2):369-391, 2013.
[6] Tsung-Ming Huang, Han-En Hsieh, Wen-Wei Lin, and Weichung Wang. Matrix representation of the double-curl operator for simulating three dimensional photonic
crystals. Mathematical and Computer Modelling, 58(1-2):379-392, 2013.
[7] Charles Kittel, Paul McEuen, and Paul McEuen. Introduction to solid state physics, volume 8. Wiley New York, 1996.
[8] Wei-De Li. Eigenvalue problems of discrete curl operators on various lattices for simulating three dimensional photonic crystals.
[9] Marko Loncar, Theodor Doll, Jelena Vuckovic, and Axel Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of lightwave technology, 18(10):1402-1411, 2000.
[10] Ling Lu, Chen Fang, Liang Fu, Steven G Johnson, John D Joannopoulos, and Marin Soljacic. Symmetry-protected topological photonic crystal in three dimensions. Nature Physics, 12(4):337, 2016.
[11] Ling Lu, Liang Fu, John D Joannopoulos, and Marin Soljacic. Weyl points and line nodes in gyroid photonic crystals. Nature photonics, 7(4):294, 2013.
[12] Susumu Noda, Katsuhiro Tomoda, Noritsugu Yamamoto, and Alongkarn Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289(5479):604-606, 2000.
[13] Oscar Painter, J Vuckovic, and Axel Scherer. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. JOSA B, 16(2):275-285,
1999.
[14] Oskar Painter, RK Lee, Axel Scherer, A Yariv, JD O'brien, PD Dapkus, and I Kim. Two-dimensional photonic band-gap defect mode laser. Science, 284(5421):1819-1821, 1999.
[15] Wahyu Setyawan and Stefano Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. Computational materials science,
49(2):299-312, 2010.
[16] Soane Soussi. Convergence of the supercell method for defect modes calculations in photonic crystals. SIAM Journal on Numerical Analysis, 43(3):1175-1201, 2005.
[17] Hsin-Han Tsai. A Scalable and Ultrafast Eigensolver for Three Dimensional Photonic Crystals on GPU. PhD thesis, 2017.
[18] Werner S Weiglhofer and Akhlesh Lakhtakia. Introduction to complex mediums for optics and electromagnetics, volume 123. SPIE press, 2003.
[19] Kane Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302-307, 1966.
[20] Chin-ping Yu and Hung-chun Chang. Compact finite-difference frequency domain method for the analysis of two-dimensional photonic crystals. Optics Express, 12(7):1397-1408, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊