|
[1] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. [2] A.-P. Calderón. Lebesgue spaces of differentiable functions and distributions. In Proc. Sympos. Pure Math., Vol. IV, pages 33–49. American Mathematical Society, Providence, R.I., 1961. [3] William P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. [4] Richard L. Wheeden and Antoni Zygmund. Measure and integral. Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2015. An introduction to real analysis. [5] Robert S. Strichartz. A note on Trudinger’s extension of Sobolev’s inequalities. Indiana Univ. Math. J., 21:841–842, 1971/72. [6] Nicolaas du Plessis. Some theorems about the Riesz fractional integral. Trans. Amer. Math. Soc., 80:124–134, 1955. [7] Haïm Brézis and Stephen Wainger. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations, 5(7):773–789, 1980. [8] Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, second edition, 2008. [9] Richard O’Neil. Convolution operators and L(p; q) spaces. Duke Math. J., 30:129–142, 1963. [10] Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. 38
|