(3.220.231.235) 您好!臺灣時間:2021/03/07 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠儒
研究生(外文):Chen, Kuan-Ju
論文名稱:解聚前處理料源及有機廢水沼氣生產之研究
論文名稱(外文):Study of anaerobic digestion to produce biogas from de-aggregation organic waste
指導教授:曾慶平
指導教授(外文):Tseng, Chin-Ping
口試委員:陳俊勳陳文華
口試日期:2017-09-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:67
中文關鍵詞:纖維原料沼氣生成解聚前處理連續式反應器厭氧醱酵
外文關鍵詞:Cellulosic materialsBiogas productiondeaggregation pretreatmentContinuous reactorAnaerobic digestion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石化燃料造成環境破壞、排放大量溫室氣體等問題,在環保意識抬頭下,人們找尋可替代的能源,其中生質沼氣具有與天然氣接近的熱值適合作為發電原料,使生質沼氣可將廢棄物能源化受到重視。
根據聯合國資料,若將世界上的生質廢棄物轉為能源,將可取代1/4的石油產量。台灣農業纖維廢棄物年產212萬噸,其中稻稈佔最大宗,其它還有蔗渣、木屑等農業纖維廢棄物,主要由纖維素組成其結構為醣類聚合物,若可將醣類結構轉為單醣即可轉為豐富沼氣。本研究以核能所開發的纖維素解聚技術,將農業生質廢棄物以蒸氣爆裂或酸催化蒸氣爆裂解聚後進行厭氧醱酵,使農業生質廢棄物增加生物可利用性提升沼氣生成。
本論文分別探討稻稈、蔗渣及木屑的沼氣潛能和調整厭氧醱酵參數,如酸鹼值、碳氮比等以增加沼氣產量,此外也利用養豬業廢水含有大量氮源的特性,作為纖維廢棄物碳氮比調整材,並建立實驗室規模連續進料厭氧反應器,模擬養豬場厭氧醱酵情形,評估養豬場廢水加入解聚纖維原料提升沼氣產量的效果。
本研究證實經酸催化蒸氣爆裂解聚纖維料源,藉由控制酸鹼值可提升沼氣潛能,解聚稻稈、蔗渣及木屑分別在pH=6-7時有最佳產氣效率,每克乾重分別可產生313、213、282毫升沼氣;調整碳氮比,調整至20時有最佳產氣量,分別可產256、250、251毫升沼氣。在實驗室規模連續進料厭氧反應器證實,添加1% 解聚稻稈有最佳沼氣生成量,每克乾重可產生315毫升沼氣,因此在模擬三段式放流反應器中添加解聚纖維原料可增加沼氣產量。
Petrochemical fuel damage environment and produce green-house gas emission. The researches for alternative energy can meet the environment protection. Biogas is one of good choose for alternative energy because it turns waste into energy and produces a similar heat value as natural gas.
According to UN statistical data, the agricultural biomass is generated more and more for every year. The energy efficiency is equivalent to 25 percent of global oil production. The agricultural waste is composed of cellulosic compounds that are aggregated by pentose or hexose. They will be excellent biogas materials after destructed structure pretreatment. The agricultural cellulosic waste is generated about 2.12 million tons every year in Taiwan. The kinds of agricultural waste are rice straw, sugarcane bagasse and wood dust. This study utilizes INRI cellulosic de-aggregation technology which uses steam explosion or acid-catalyzed steam explosion to destruct cellulosic structure. The de-aggregation cellulosic materials would enhance biodegradability and biogas production by anaerobic digestion.
In this study, we examined biogas potential of different agricultural wastes and adjust the parameters (e.g pH value or C/N ratio) of anaerobic digestion. Since the pig farms produce lots of wastewater in Taiwan which water are nitrogen-rich and it can adjust high carbon materials to appropriate C/N ratio. Furthermore, we set up a lab-scale continuously anaerobic digestion to simulate the actual fermentation conditions.
The results demonstrated that adjust the conditions of de-aggregation cellulosic material and anaerobic digestion enhancement of biogas production. The de-aggregation of rice straw, sugarcane bagasse and wood dust were the best performance for biogas production at pH= 6-7. They produced 313, 213 and 282 ml/gTS, respectively. In C/N ratio treatment group, the best conditions were C/N= 20, which produced 256, 250 and 251 ml/gTS, respectively. The co-digestion was de-aggregation rice straw and pig wastewater. In the continues anaerobic digestion, addition 1% dry weight of wastewater volume could produce 315 ml/gTS.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
一、前言 1
1.1研究背景與目的 1
二、緒論 2
2.1生質能源型態與發展 2
2.2生質沼氣現況與發展 2
2.3厭氧醱酵原理 3
2.4影響厭氧醱酵的因素 4
2.4.1厭氧醱酵料源前處理與調整 5
2.4.2纖維素解聚技術 6
2.4.3其它調整厭氧醱酵方式 7
三、材料與方法 8
3.1實驗藥品 8
3.2 實驗用具與設備 9
3.2.1實驗用具 9
3.2.2實驗設備 10
3.3實驗材料 11
3.3.1未解聚纖維原料 11
3.3.2解聚纖維原料 11
3.3.3活性污泥與養豬廢水 11
3.4實驗方法 12
3.4.1固體組成分析 12
3.4.2 化學需氧量 12
3.4.3纖維素成分分析 13
3.4.4元素分析 15
3.4.5氨氮濃度檢測 15
3.4.6去氧核醣核酸萃取 16
3.4.7聚合酶連鎖反應 17
3.4.8變性梯度膠體電泳 18
3.4.9批次厭氧醱酵反應 18
3.4.10實驗室級連續厭氧醱酵反應器 18
四、實驗結果 20
4.1材料基本性質分析 20
4.1.1纖維原料固體含量 20
4.1.2化學需氧量 20
4.1.3元素分析 20
4.1.4纖維素組成分析 21
4.2批次式厭氧醱酵 21
4.2.1不同解聚方式的產氣效果 22
4.2.2原料與解聚前處理纖維生產沼氣評估 22
4.2.3調整料源酸鹼值產氣實驗 23
4.2.4調整料源碳氮比產氣實驗 23
4.2.5評估調整酸鹼值對有機負荷量影響 23
4.2.6評估纖維廢棄物混摻養豬廢水產氣實驗 24
4.3實驗室規模連續進料厭氧反應器 24
4.4厭氧醱酵菌相分析 25
4.4.1細菌 25
4.4.2古生菌 26
五、討論 27
5.1不同纖維原料基本性質比較 27
5.2解聚纖維產生沼氣比較 27
5.3畜殖廢水或廢棄物混摻纖維原料比較 28
六、結論 30
七、參考文獻 31
(1) Unep.org. (2017). Waste Agricultural Biomass | Global Partnership on Waste Management. [online] Available at: http://www.unep.org/gpwm/what-we-do/waste-agricultural-biomass
(2) 行政院農委會,農業纖維廢棄物歷年表,90-104年
(3) Haug, R.T. 1993. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, Fl. 717 pages.
(4) Kaparaju, P., Serrano, M., Thomsen, A., Kongjan, P. and Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), pp.2562-2568.
(5) Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S (2008) More about anaerobic digestion (AD). In: Al Seadi T (ed) Biogas handbook. University of Southern Denmark, Esbjerg
(6) REN21. (2015). Renewables 2015 Global Status Report. REN21
(7) Wang, X., Lu, X., Li, F. and Yang, G. (2014). Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS ONE, 9(5), p.e97265.
(8) Xu, S., Karthikeyan, O., Selvam, A. and Wong, J. (2012). Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresource Technology, 126, pp.425-430.
(9) Fernández, J., Pérez, M. and Romero, L. (2010). Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. Bioresource Technology, 101(16), pp.6322-6328.
(10) Li, Y., Zhang, R., He, Y., Zhang, C., Liu, X., Chen, C., & Liu, G. (2014). Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresource technology, 156, 342-347.
(11) Abbasi, T., Tauseef, S. and Abbasi, S. (2012). Biogas Energy. New York, NY: Springer New York.
(12) Li, K., Liu, R. and Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, pp.857-865.
(13) Wang X, Lu X, Li F, Yang G (2014) Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLOS ONE 9(5): e97265.
(14) Effect of carbon to nitrogen ratio on biogas production. (2013). [ebook] UK: I. J. Dioha, C.H. Ikeme, T. Nafi’u, N. I. Soba an d Yusuf M.B.S., pp.Vol. 1 No. 3, pp.1 -10. Available at: http://www.eajournals.org/wp-content/uploads/EFFECT-OF-CARBON-TO-NITROGEN-RATIO-ON-BIOGAS-PRODUCTION.pdf
(15) Ilukor, J. and Oluka, S. (1995). Carbon-to-nitrogen ratios in agricultural residues. Environmental Monitoring and Assessment, 38-38(2-3), pp.271-275.
(16) Riya, S., Suzuki, K., Terada, A., Hosomi, M. and Zhou, S. (2016). Influence of C/N Ratio on Performance and Microbial Community Structure of Dry-Thermophilic Anaerobic Co-Digestion of Swine Manure and Rice Straw. Journal of Medical and Bioengineering, 5(1), pp.11-14.
(17) Li, K., Liu, R. and Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, pp.857-865.
(18) Alvira, Pablo & Negro, María & Ballesteros, Ignacio & Gonzalez, Alberto & Ballesteros, Mercedes. (2016). Steam Explosion for Wheat Straw Pretreatment for Sugars Production. Bioethanol. 2. . 10.1515/bioeth-2016-0003.
(19) Song, Z., GaiheYang, Liu, X., Yan, Z., Yuan, Y. and Liao, Y. (2014). Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. PLoS ONE, 9(4), p.e93801
(20) 稻稈產製酒精之原料前處理技術回顧與評析. (2013).核能研究所: 陳文華, p.7-12. Available at: http://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=813
(21) Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), pp.4744-4753.
(22) Herrmann, C., Heiermann, M., Idler, C. and Prochnow, A. (2012). Particle Size Reduction during Harvesting of Crop Feedstock for Biogas Production I: Effects on Ensiling Process and Methane Yields. BioEnergy Research, 5(4), pp.926-936.
(23) Amin, F., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G. and Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1).
(24) Yanfeng He, Yunzhi Pang, Xiujin Li, Yanping Liu, Rongping Li, and Mingxia Zheng, Investigation on the Changes of Main Compositions and Extractives of Rice Straw Pretreated with Sodium Hydroxide for Biogas Production, Energy & Fuels 2009 23 (4), 2220-2224 DOI: 10.1021/ef8007486
(25) Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W. and Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 102(24), pp.11177-11182.
(26) Horn, S., Estevez, M., Nielsen, H., Linjordet, R. and Eijsink, V. (2011). Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresource Technology, 102(17), pp.7932-7936.
(27) Van Soest P.J., Robertson J.B., Lewis B.A. (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583–3597.
(28) Zheng Chen Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14
(29) 養豬三段式廢水與污泥處理技術. (n.d.).郭猛德 、蕭庭訓 、王政騰, pp.9-10. Available at: http://tagis.coa.gov.tw/pages/Data/Ref/2.pdf [Accessed 6 Sep. 2017].
(30) Teghammar, A., Karimi, K., Sárvári Horváth, I. and Taherzadeh, M. (2012). Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass and Bioenergy, 36, pp.116-120.
(31) Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F. and Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33(12), pp.2653-2658.
(32) Sharma, S., Mishra, I., Sharma, M. and Saini, J. (1988). Effect of particle size on biogas generation from biomass residues. Biomass, 17(4), pp.251-263.
(33) Zhu, S., Huang, W., Huang, W., Wang, K., Chen, Q. and Wu, Y. (2015). Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent. Applied Energy, 154, pp.190-196.
(34) Kshirsagar, S., Waghmare, P., Chandrakant Loni, P., Patil, S. and Govindwar, S. (2017). Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology.
(35) Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N., & Champreda, V. (2014). Sequential Acid and Alkaline Pretreatment of Rice Straw for Bioethanol Fermentation. BioResources, 9(4), 5988-6001. doi:10.15376/biores.9.4.5988-6001
(36) Zhang, R. (1999). Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresource Technology, 68(3), pp.235-245.
(37) Song, Z., Yang, G., Guo, Y., & Zhang, T. (2012). Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion . BioResources, 7(3), 3223-3236.
(38) Chandra, R., Takeuchi, H., Hasegawa, T. and Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43(1), pp.273-282.
(39) Osman, G. A., El-Tinay, A. H., & Mohamed, E. F. (2006). Biogas production from agricultural wastes. Journal of Food Technology, 4(1), 37-39.
(40) Isci, A. and Demirer, G. (2007). Biogas production potential from cotton wastes. Renewable Energy, 32(5), pp.750-757.
(41) Mussoline, W., Esposito, G., Lens, P., Garuti, G. and Giordano, A. (2012). Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater. Biomass and Bioenergy, 46, pp.469-478.
(42) Shi, L., Huang, M., Zhang, W. and Liu, H. (2012). Effect of Dry Matter Concentration on Dry Anaerobic Digestion of Animal Manure and Straw. Applied Mechanics and Materials, 253-255, pp.897-902.
(43) Zitomer, D. and Shrout, J. (1998). Feasibility and benefits of methanogenesis under oxygen-limited conditions. Waste Management, 18(2), pp.107-116.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔