跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯亞瑟
研究生(外文):Jacek Gliniak
論文名稱:在水相中以硫摻雜氧化石墨烯量子點做為產氫光催化劑
論文名稱(外文):Sulfur-Doped Graphene Oxide Quantum Dots as Photocatalysts for Hydrogen Production in the Aqueous Phase
指導教授:吳東昆
指導教授(外文):Tung-Kung Wu
口試委員:李耀坤徐秀福鄭建中尤禎祥
口試委員(外文):Yaw Kuen LiHsiu-Fu HsuChien-Chung ChengJen-Shiang Yu
口試日期:2017-12-04
學位類別:博士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:95
中文關鍵詞:氧化石墨氫生產光催化量子點太陽能
外文關鍵詞:graphene oxidehydrogen generationphotocatalysisquantum dotssolar energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今我們幾乎都以非再生能源當作電力的來源,其中以不久的將來會耗盡的石化燃料為主。但有效用的可再生能源仍然不足以滿足我們現今不斷增長的能源需求。其中有一種能源方案是通過太陽光光能使水中產生氫氣,並將其用作氫燃料電池中的能量載體,僅產生沒有任何污染物的水。因此,尋找新型的非貴金屬或無金屬特別是碳材料的光催化劑已經引起了工業界和學術界的廣泛關注。
石墨烯量子點 (GQDs),尺寸範圍為2至20 nm的小石墨烯碎片 與其他半導體量子點有著不同改有趣的現像,而引起了相當大的關注。近年來,GQDs具有化學惰性,低毒性,在水中分散性好,且相對穩定的光致發光等特點受到越來越多的關注。本研究闡述摻有雜原子的GQDs能夠有效地調控其能隙和電子密度,從而提高化學活性,提高光學性能和選擇性。
本研究中,我們專注於水相中使用硫摻雜氧化石墨烯量子點(S-GOQDs)作為光催化的產氫材料,S-GOQDs可以利用水熱法(bottom-up)簡單且經濟效益的合成。藉由 原子力顯微鏡(AFM)的觀察S-GOQDs具有雙層和參層石墨烯厚度、透射電子顯微鏡(TEM)分析顯示S-GOQDs有著極高的結晶度,其晶體大小在3-10 nm、透過X射線光電子能譜(XPS)和電子色散譜(EDS)證明了石墨烯量子點晶格中S原子的成功摻雜。S-GOQDs在333、395和524 nm處表現出三個吸收帶, C = S和C-S伸縮振動信號在1075 cm-1和690 cm -1,激發波長最大值在451和520 nm,也證實了硫原子成功摻入GOQDs中。電子結構分析中S-GOQDs 的導帶(CBM)與價帶(VBM) 適合用於水分解。在500 W的Xe燈照射下,S-GOQDs在純水中的氫生成效率達351 μmol·h-1·g-1,當使用80%乙醇作為電子供應者時可達到了1471 μmol·h-1·g -1是純水系統中的4.2倍,在直接日光照射下,純水中的初始速率為18,166 μmol·h-1·g-1,在80%的乙醇水溶液中的初始速率為30,519 μmol·h-1·g-1。因此,無金屬、廉價且環境友好的光催化劑S-GOQDs在從水中有效率的產生氫氣,具有巨大的開發潛力。
Nowadays our electricity production is mostly based on a non-renewable energy resources, mainly fossil fuels which are projected to deplete in near future. Renewable energy resources available today are still not efficient enough to satisfy our constantly growing energy demand. One of the proposed scenarios is to produce hydrogen from water by solar light, and use it as the energy carrier in a hydrogen fuel cells, producing only water without any pollutants. Hence, searching for novel photocatalysts based on nonprecious metals or metal-free, especially carbon materials, which are abundant and environmentally friendly, has attracted considerable attention from both industrial and academic researchers.
Graphene quantum dots (GQDs), small graphene fragments of size ranging from 2 to 20 nm, have received considerable attention due to its interesting phenomena different from those in quantum dots of any other semiconductors. In recent years, GQDs receives increasing attention owing to their properties like chemical inertness, low cytotoxicity, excellent dispersibility in water and relatively stable photoluminescence. Further researches showed that GQDs doped with heteroatoms can effectively modulate their band gap and electronic density leading to enhanced chemical activity, new optical properties, and selectivity.
In this work we focus on the photocatalytic hydrogen production activity in aqueous media by using sulfur-doped graphene oxide quantum dots (S-GOQDs). S-GOQDs have been synthesized by hydrothermal method with “bottom-up” approach. As investigated by atomic force microscopy (AFM), the synthesized S-GOQDs possessed bi- and tri-layer graphene thickness. As illustrated by transmission electron microscopy (TEM), the synthesized S-GOQDs exhibited high crystallinity and size ranging from 3-10nm. Successful doping of S atoms in graphene quantum dot lattices was proven by X-ray photoelectron spectroscopy (XPS) and electron dispersive spectroscopy (EDS) characterization. The UV‒vis, FT‒IR, and photoluminescent spectra of the synthesized S-GOQDs exhibited three absorption bands at 333, 395, and 524 nm, characteristic of C=S and C-S stretching vibration signals at 1075 cm-1 and 690 cm-1, and two excitation wavelength independent emission signals with maxima centered at 451 and 520 nm, respectively, confirming the successful doping of S atom into the GOQDs. Electronic structural analysis suggested that the S-GOQDs exhibited conduction band minimum (CBM) and valence band maximum (VBM) levels suitable for water splitting. Under a 500 W Xe-lamp irradiation, the S-GOQDs exhibited a high hydrogen generation efficiency of 351 μmol∙h-1∙g-1 in pure water, which is enhanced 4.2-fold to 1471 μmol∙h-1∙g-1 when the use of 80% ethanol as an electron donor. Under direct sunlight irradiation, an initial rate of 18,166 μmol∙h-1∙g-1 in pure water and 30,519 μmol∙h-1∙g-1 in 80% EtOH aqueous solution were obtained. Therefore, metal-free and inexpensive S-GOQDs hold great potential in the development of sustainable and environmental-friendly photocatalysts for efficient hydrogen generation from water-splitting.
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1. Hydrogen for Energy 3
2.2. Semiconductive nanoparticles in photocatalytic hydrogen production 5
2.3. Graphene 15
2.4. Graphene quantum dots (GQDs) 19
2.5. Heteroatom-doped GQDs 20
2.6. Graphene-based materials in photocatalytic hydrogen production 22
3. THE AIM OF WORK 36
4. MATERIALS AND METHODS 38
4.1. Synthesis of GOQDs 38
4.2. Synthesis of N-GOQDs 38
4.3. Synthesis of S, N-GOQDs 38
4.4. Synthesis of S-GOQDs 39
4.5. Instrumentation and experimental procedures 39
4.5.1. UV-Vis absorption and photoluminescence spectroscopy…………………... 39
4.5.2. FT-IR and Raman spectroscopy……………………………………………... 39
4.5.3. Transmission electron microscopy and atomic force microscopy..………….. 40
4.5.4. Linear sweet voltammetry (LSV)……………………………………………. 40
4.5.5. X-ray photoelectron spectroscopy (XPS)……………………………………. 40
4.6. Photocatalytic hydrogen generation 41
5. RESULTS AND DISCUSSION 42
6. CONCLUSIONS 71
7. FUTURE PERSPECTIVES 74
8. REFERENCES 76
9. List of abbreviations 83
(1) A. Z. Jones; About.com: About.com, 2015; Vol. 2015.
(2) M. Grätzel Chem. Lett. 2005, 34, 8.
(3) Renewables 2016 Global Status Report, REN21 Secretariat, Paris
(4) J. J. Conti; U.S. Energy Info. Administration: 2012.
(5) Renewable Hydrogen Network: 2012; Vol. 2015.
(6) Y. Wang; H. Li; P. He; H. Zhou ChemSusChem 2010, 3, 571.
(7) S. K. Nhog; D. Njomo Renew. Sus. E. Rev. 2012, 16, 6782.
(8) Oxford English Dictionary; 2nd ed.; Clarendon Press: 1989.
(9) A. Kudo; Y. Miseki Chem. Soc. Rev. 2009, 38, 253.
(10) A. Fujishima; K. Honda Nature 1972, 238, 37.
(11) X. Chen; C. Li; M. Gratzel; R. Kostecki; S. S. Mao Chem. Soc. Rev. 2012, 41, 7909.
(12) X. Chen; S. Shen; L. Guo; S.S. Mao Chem. Rev. 2010, 110, 6503.
(13) Y. Xu; M. A. A. Schoonen American Mineralogist 2000, 85, 543.
(14) K. Maeda; M. Higashi; D. Lu; R. Abe; K. Domen J. Am. Chem. Soc. 2010, 132, 5858.
(15) X. Wang; G. Liu; Z. G. Chen; F. Li; L. Wang; G. Q. Lu; H. M. Cheng Chem. Comm. 2009, 3452.
(16) K. Maeda; R. Abe; K. Domen J. Phys. Chem. C 2011, 115, 3057.
(17) P. V. Kamat; J. Bisquert J. Phys. Chem. C 2013, 117, 14873.
(18) K. Maeda; K. Teramura; D. Lu; T. Takata; N. Saito; Y. Inoue; K. Domen Nature 2006, 440, 295.
(19) N. Bao; L. Shen; T. Takata; K. Domen Chem. Mater. 2008, 20, 110.
(20) S. R. Lingampalli; U. K. Gautam; C. N. R. Rao Energy & Environ. Sci. 2013, 6, 3589.
(21) L. Liao; Q. Zhang; Z. Su; Z. Zhao; Y. Wang; Y. Li; X. Lu; D. Wei; G. Feng; Q. Yu; X. Cai; J. Zhao; Z. Ren; H. Fang; F. Robles-Hernandez; S. Baldelli; J. Bao Nature Nano. 2014, 9, 69.
(22) P. Kalisman; Y. Nakibli; L. Amirav Nano Lett. 2016, 16, 1776.
(23) M. G. Kibria; F. A. Chowdhury; S. Zhao; B. AlOtaibi; M. L. Trudeau; H. Guo; Z. Mi Nature Comm. 2015, 6, 6797.
(24) G. B. Haxel; J. B. Hedrick; G. J. Orris In U.S. Geological Survey 2002; Vol. 087-02.
(25) S. Bharech; R. Kumar J. Mater. Sci. Mech. Eng. 2015, 2, 70.
(26) Wallace, P. R. Phys. Rev. 1947, 71, 476.
(27) X. K. Lu; M. F. Yu; H. Huang; R. S. Ruoff Nanotechnology 1999, 10, 269.
(28) The Nobel Prize in Physics 2010; https://www.nobelprize.org/nobel_prizes/physics/laureates/2010/
(29) K. S. Novoselov; A. K. Geim; S. V. Morozov; D. Jiang; Y. Zhang; S. V. Dubonos; I. V. Grigorieva; A. A. Firsov Science 2004, 306, 666.
(30) S. Arghavan; A. V. Singh J. Nanotechnol. Eng, Med. 2012, 2, 1.
(31) S. V. Morozov; K. S. Novoselov; M. I. Katsnelson; F. Schedin; D. C. Elias; J. A. Jaszczak; A. K. Geim Phys. Rev. Lett. 2008, 100, 016602.
(32) C. Lee; X, W.; J. W. Kysar; J. Hone Science 2008, 321, 385.
(33) 2010 Nobel Physics Laureates; www.nobelprize.org
(34) J. Lee; T. H. Han; M. H. Park; D. Y. Jung; J. Seo; H. K. Seo; H. Cho; E. Kim; J. Chung; S. Y. Choi; T. S. Kim; T. W. Lee; S. Yoo Nature Comm. 2016, 7, 11791.
(35) N. Kheirabadi; A. Shafiekhani J. Appl. Phys. 2012, 112, 124323.
(36) D. Cohen-Tanugi; J. C. Grossman Nano Lett. 2012, 12, 3602.
(37) H. Sirringhaus; T. Kawase; R. H. Friend; Shimoda, T.; M. Inbasekaran; W. Wu; E. P. Woo Science 2000, 290, 2123.
(38) L. Britnell; R. V. Gorbachev; R. Jalil; B. D. Belle; F. Schedin; A. Mishchenko; T. Georgiou; M. I. Katsnelson; L. Eaves; S. V. Morozov; N. M. R. Peres; J. Leist; A. K. Geim; K. S. Novoselov; L. A. Ponomarenko Science 2012, 335, 947.
(39) W. Choi; I. Lahiri; R. Seelaboyina; Y. S. Kang Crit. Rev. Solid State Mater. Sci. 2010, 35, 52.
(40) S. Cao; J. Yu J. Photochem. Photobiol. C 2016, 27, 72.
(41) M. Bacon; S. J. Bradley; T. Nann Part. Part. Syst. Charact. 2014, 31, 415.
(42) M. Thakur; M. K. Kumawat; R. Srivastava RSC Advances 2017, 7, 5251.
(43) M. K. Kumawat; M. Thakur; R. B. Gurung; R. Srivastava ACS Sustainable Chem. Eng. 2017, 5, 1382.
(44) D. Iannazzo; A. Pistone; M. Salamò; S. Galvagno; R. Romeo; S. V. Giofré; C. Branca; G. Visalli; A. Di Pietro Int. J. Pharm. 2017, 518, 185.
(45) H. H. Cho; H. Yang; D. J. Kang; B. J. Kim ACS Appl. Mater. Interfaces 2015, 7, 8615.
(46) S. H. Song; M. H. Jang; J. Chung; S. H. Jin; B. H. Kim; S. H. Hur; S. Yoo; Y. H. Cho; S. Jeon Adv. Opt. Mater. 2014, 2, 1016.
(47) B. S. Kim; D. C. J. Neo; B. Hou; J. B. Park; Y. Cho; N. Zhang; J. Hong; S. Pak; S. Lee; J. I. Sohn; H. E. Assender; A. A. R. Watt; S. N. Cha; J. M. Kim ACS Appl. Mater. Interfaces 2016, 8, 13902.
(48) M. L. Tsai; W. C. Tu; L. Tang; T. C. Wei; W. R. Wei; S. P. Lau; L. J. Chen; J. H. He Nano Lett. 2016, 16, 309.
(49) H. Liu; Y. Liu; D. Zhu J. Mater. Chem. 2011, 21, 3335.
(50) X. Wang; G. Sun; P. Routh; D. Kim; W. Huang; P. Chen Chem. Soc. Rev. 2014, 43, 7067.
(51) L. Zhang; Z. Zhang; R. Liang; Y. Li; J. Qiu Anal. Chem. 2014, 86, 4423.
(52) Z. Fan; Y. Li; X. Li; L. Fan; S. Zhou; D. Fang; S. Yang Carbon 2014, 70, 149.
(53) Z. Qu; X. Zhou; L. Gu; R. Lan; D. Sun; D. Yu; G. Shi Chem. Comm. 2013, 49, 9830.
(54) H. Fei; R. Ye; G. Ye; Y. Gong; Z. Peng; X. Fan; E. L. G. Samuel; P. M. Ajayan; J. M. Tour ACS Nano 2014, 8, 10837.
(55) X. Li; S. Lau; L. Tang; R. Ji; P. Yang J. Mater. Chem. C 2013, 1, 7308.
(56) J. Zhao; L. Tang; J. Xiang; R. Ji; J. Yuan; J. Zhao; R. Yu; Y. Tai; L. Song Appl. Phys. Lett. 2014, 105, 111116.
(57) S. Yang; J. Sun; P. He; X. Deng; Z. Wang; C. Hu; G. Ding; X. Xie Chem. Mater. 2015, 27, 2004.
(58) Q. Feng; Q. Cao; M. Li; F. Liu; N. Tang; Y. Du Appl. Phys. Lett. 2013, 102, 013111.
(59) A. Ananthanarayanan; Y. Wang; P. Routh; M. A. Sk; A. Than; M. Lin; J. Zhang; Chen, J.; H. Sun; P. Chen Nanoscale 2015, 7, 8159.
(60) B. X. Zhang; H. Gao; X. L. Li New J. Chem. 2014, 38, 4615.
(61) D. Qu; Z. Sun; M. Zheng; J. Li; Y. Zhang; G. Zhang; H. Zhao; X. Liu; Z. Xie Adv. Optical Mater. 2015, 3, 360.
(62) Y. Sun; C. Shen; J. Wang; Y. Lu RSC Advances 2015, 5, 16368.
(63) Y. Li; Y. Zhao; H. Cheng; Y. Hu; G. Shi; L. Dai; L. Qu J. Am. Chem. Soc. 2012, 134, 15.
(64) B. Zhang; C. Xiao; Y. Xiang; B. Dong; S. Ding; Y. Tang ChemElectroChem 2016, 3, 864.
(65) Z. Cai; F. Li; P. Wu; L. Ji; H. Zhang; C. Cai; D. F. Gervasio Anal. Chem. 2015, 87, 11803.
(66) S. Chen; Y. Song; Y. Li; Y. Liu; X. Su; Q. Ma N. J. Chem. 2015, 39, 8114.
(67) T. Yeh; C. Teng; S. Chen; H. Teng Adv. Mater. 2014, 26, 3297.
(68) S. Li; Y. Li; J. Cao; J. Zhu; L. Fan; X. Li Anal. Chem. 2014, 86, 10201.
(69) S. Chandra; P. Patra; S. H. Pathan; S. Roy; S. Mitra; A. Layek; R. Bhar; P. Pramanik; A. Goswami J. Mater. Chem. B 2013, 1, 2375.
(70) X. Li; S. P. Lau; L. Tang; R. Ji; P. Yang Nanoscale 2014, 6, 5323.
(71) S. Bian; C. Shen; Y. Qian; J. Liu; F. Xi; X. Dong Sens. Actuators, B 2017, 242, 231.
(72) S. Bian; C. Shen; H. Hua; L. Zhou; H. Zhu; F. Xi; J. Liu; X. Dong RSC Adv. 2016, 6, 69977.
(73) J. Yu; B. Yang; B. Cheng Nanoscale 2012, 4, 2670.
(74) Z. Yan; X. Yu; A. Han; P. Xu; P. Du J. Phys. Chem. C 2014, 118, 22896.
(75) S. W. Cao; Y. P. Yuan; J. Fang; M. M. Shahjamali; F. Y. C. Boey; J. Barber; S. C. Joachim Loo; C. Xue Int. J. Hydrog. Energy 2013, 38, 1258.
(76) Q. Xiang; J. Yu; M. Jaroniec J. Phys. Chem. C 2011, 115, 7355.
(77) J. Zhang; J. Yu; M. Jaroniec; J. R. Gong Nano Lett. 2012, 12, 4584.
(78) F. Meng; J. Li; S. K. Cushing; M. Zhi; N. Wu J. Am. Chem. Soc. 2013, 135, 10286.
(79) P. Yang; J. Zhao; J. Wang; H. Cui; L. Li; Z. Zhu RSC Adv. 2015, 5, 21332.
(80) J. Liu; Y. Liu; N. Liu; Y. Han; X. Zhang; H. Huang; Y. Lifshitz; S. Lee; J. Zhong; Z. Kang Science 2015, 347, 970.
(81) W. S. Hummers; R. E. Offeman J. Am. Chem. Soc. 1958, 80, 1339.
(82) D. Qu; M. Zheng; L. Zhang; H. Zhao; X. Xie; X. Jing; R. E. Haddad; H. Fan; Z. Sun Scientific Rep. 2014, 4, 5294.
(83) D. Qu; M. Zheng; P. Du; Y. Zhou; L. Zhang; D. Li; H. Tan; Z. Zhao; Z. Xie; Z. Sun Nanoscale 2013, 5, 12272.
(84) D. Pan; J. Zhang; Z. Li; C. Wu; X, Y.; M. Wu Chem. Comm. 2010, 46, 3681.
(85) G. Eda; Y. Lin; C. Mattevi; H. Yamaguchi; H. Chen; I. S. Chen; C. Chen; M. Chhowalla Adv. Mater. 2010, 22, 505.
(86) Z. Luo; P. M. Vora; E. J. Mele; A. T. C. Johnson; J. M. Kikkawa Appl. Phys. Lett. 2009, 94, 111909.
(87) M. Mahyari; Y. Bide; J. N. Gavgani Appl. Catal., A 2016, 517, 100.
(88) D. Pan; J. Zhang; Z. Li; M. Wu Adv. Mater. 2010, 22, 734.
(89) J. S. Cameron; D. S. Ashley; J. S. Andrew; G. S. Joseph; T. G. Christopher Nanotechnol. 2016, 27, 125704.
(90) M. K. Blees; A. W. Barnard; P. A. Rose; S. P. Roberts; K. L. McGill; P. Y. Huang; A. R. Ruyack; J. W. Kevek; B. Kobrin; D. A. Muller; P. L. McEuen Nature 2015, 524, 204.
(91) D. Jiang; Y. Chen; N. Li; W. Li; Z. Wang; J. Zhu; H. Zhang; B. Liu; S. Xu PLoS ONE 2015, 10, 0144906.
(92) C. K. Chua; Z. Sofer; P. Šimek; O. Jankovský; K. Klímová; S. Bakardjieva; S. Hrdličková Kučková; M. Pumera ACS Nano 2015, 9, 2548.
(93) A. C. Ferrari; J. C. Meyer; V. Scardaci; C. Casiraghi; M. Lazzeri; F. Mauri; S. Piscanec; D. Jiang; K. S. Novoselov; S. Roth; A. K. Geim Phys. Rev. Lett. 2006, 97, 187401.
(94) L. M. Malard; M. A. Pimenta; G. Dresselhaus; M. S. Dresselhaus Phys. Rep. 2009, 473, 51.
(95) S. Kim; D. H. Shin; C. O. Kim; S. S. Kang; S. S. Joo; S. Choi; S. W. Hwang; Cc Sone Appl. Phys. Lett. 2013, 102, 053108.
(96) Y. Dong; H. Pang; H. B. Yang; C. Guo; J. Shao; Y. Chi; C. M. Li; T. Yu Angew. Chem. Int. Ed. 2013, 52, 7800.
(97) J. N. Gavgani; A. Hasani; M. Nouri; M. Mahyari; A. Salehi Sens. Actu., B 2016, 229, 239.
(98) J. Liang; Y. Jiao; M. Jaroniec; S. Z. Qiao Angew. Chem. Int. Ed. 2012, 51, 11496.
(99) D. S. Jensen; S. S. Kanyal; N. Madaan; M. A. Vail; A. E. Dadson; M. H. Engelhard; M. R. Linford Surf. Sci. Spect. 2013, 20, 36.
(100) R. Precht; S. Stolz; E. Mankel; T. Mayer; W. Jaegermann; R. Hausbrand Phys. Chem. Chem. Phys. 2016, 18, 3056.
(101) J. Wang; R. Ma; Z. Zhou; G. Liu; Q. Liu Scientific Rep. 2015, 5, 9304.
(102) G. Zhou; L. Yin; D. Wang; L. Li; S. Pei; I. R. Gentle; F. Li; H. Cheng ACS Nano 2013, 7, 5367.
(103) H. Gao; Z. Liu; L. Song; W. Guo; W. Gao; L. Ci; A. Rao; W. Quan; R. Vajtai; P. M. Ajayan Nanotechnology 2012, 23, 275605.
(104) S. Glenis; A J. Nelson; M. M. Labes J. Appl. Phys. 1999, 86, 4464.
(105) T. Nakamura; T. Ohana; M. Ishihara; M. Hasegawa; Y. Koga Diamond Relat. Mater. 2007, 16, 1091.
(106) D. Sun; R. Ban; P. Zhang; G. Wu; J. Zhang; J. Zhu Carbon 2013, 64, 424.
(107) A. Nolte; L. Höring; M. W. Davidson; Zeiss; Vol. 2015.
(108) N. Kuo; Y. Chen; C. Wu; C. Huang; Y. Chan; I. W. P. Chen Scientific Rep. 2016, 6, 30426.
(109) R. F. Domingos; C. Franco; J. P. Pinheiro Environ. Sci. Pollution Res. 2013, 20, 4872.
(110) J. Barber Phil. Trans. R. Soc. A 2007, 365, 1007.
(111) Y. Li; G. Lu; S. Li Chemosphere 2003, 52, 843.
(112) M. Ni; M. K. H. Leung; D. Y. C. Leung; K. Sumathy Renew. Sustainable Energy Rev. 2007, 11, 401.
(113) Y. Yamada; T. Miyahigashi; K. Ohkubo; S. Fukuzumi Phys. Chem. Chem. Phys. 2012, 14, 10564.
(114) X. Zhang; M. Yang; J. Zhao; L. Guo Int. J. Hydrogen Energy 2013, 38, 15985.
(115) B. Zielinska; E. Borowiak-Palen; R. J. Kalenczuk Int. J. Hydrogen Energy 2008, 33, 1797.
(116) M. Nielsen; E. Alberico; W. Baumann; H. J. Drexler; H. Junge; S. Gladiali; M. Beller Nature 2013, 495, 85.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊