(3.235.108.188) 您好!臺灣時間:2021/02/25 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡友淳
研究生(外文):Tsai, You-Chun
論文名稱:應用葉綠素a之螢光生命週期探討光合作用中光保護機制之研究
論文名稱(外文):An investigation of non-photochemical quenching of photosynthesis through chlorophyll a fluorescence lifetime
指導教授:陳怡君陳怡君引用關係
指導教授(外文):Chen, Yi-Chun
口試委員:簡汎清胡博琛
口試委員(外文):Chien, Fan-ChingHu, Po-Shen
口試日期:2017-10-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電科技學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:螢光生命週期葉綠素a光合作用非光化學淬滅光保護作用綠藻
外文關鍵詞:fluorescence lifetimechlorophyll aphotosynthesisnon-photochemical quenchingphotoprotectionalgae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用奈秒解析螢光生命週期技術,量測小球藻(Chlorella sp.)在不同強度與波長的激發光照射之下,其光合作用光保護機制中的非光化學焠滅(non-photochemical quenching, NPQ)反應路徑。此研究的目的是探討小球藻之最佳養殖條件,希望同時兼顧光保護機制以及提高其光合作用效率。
激發光強度不同的實驗中,葉綠素a螢光生命週期的量測值不一樣。較強激發光照射會造成較長的初始螢光生命週期,反之,較弱激發光照射則會獲得較短的初始螢光生命週期。因為當光強達到一定程度時,光合作用系統II (Photosystem II)會關閉部分反應中心,以避免過多的能量進入電子傳遞鏈而造成細胞受損;無法進入反應中心的能量便以螢光形式釋放。因此,並非提高光強就可以促使綠藻快速生長。由於光合作用系統II開啟狀態的反應中心越多,光合作用效率越佳,則本研究應用螢光生命週期量測,可以找到綠藻養殖時的最佳光強。
非光化學反應焠滅機制分為三種:qE (Energy-dependent quenching)、qT (State transition)、qI (Photo-inhibition),在本論文中探討qE與qT機制對光合作用效率的影響。qT機制在弱光時啟動,其反應時間持續數十分鐘。qE機制需要高光強照射才開啟,並且不同波段的光源也會造成qE反應的差異;qE反應時間維持數秒至數分鐘。則本研究設計一套光源系統,可以分別激發qT與qE機制。本研究量測qT與qE啟動時,葉綠素a之螢光生命週期和螢光光強在數分鐘內的連續變化,並計算出光合作用的光化學反應效率。
本研究藉由量測光保護作用相闗的螢光生命週期,獲得光合作用效率的數值,希望實驗結果對於光合作用相闗研究有所貢獻,例如:糧食問題以及綠色能源。
In this thesis, I applied fluorescence lifetime technique to study the regulation of non-photochemistry quenching (NPQ) pathways in living Chlorella sp. cells. The goal is to find the best culture condition for Chlorella sp., so that the cells have balanced NPQ while having optimized photosynthesis efficiency.
When exposed to light of different intensity, the starting lifetime of chlorophyll a during fluorescence transient changed. The stronger the intensity, the longer the starting fluorescence lifetime. This is because illumination intensity above certain level causes photosystem II reaction centers to close. It is a photoprotection mechanism that prevents excess energy to damage cells. The excess energy is then released as fluorescence. While the ratio of open/closed reaction centers decides photosynthesis efficiency, fluorescence lifetime measurement provides a way to find the optimal light intensity for desired ratio of open/closed reaction centers.
Non-photochemistry quenching pathways include qE (Energy-dependent quenching), qT (State transition), and qI (Photo-inhibition). In this thesis, I discussed qE and qT mechanisms and their effects on photosynthesis efficiency. qT is activated under low light and lasts from seconds to minutes. qE is activated by stronger light, and responses differently as light wavelength varies; the reaction acts tens of minutes. I designed an illumination setup to stimulate either qE or qT response. I took continuous fluorescence lifetime measurement when either qE or qT was activated, and then calculated the corresponding photosynthesis efficiency.
I demonstrated the advantages of fluorescence lifetime technique in studying non-photochemical quenching pathways and photosynthesis efficiency. The results in this thesis might contribute to research field related to food crisis and green energy.
Content
摘要 i
ABSTRCT ii
誌謝 iv
Content v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation and objective 1
1.2 Previous researches 2
1.2.1 Introduction of photosynthesis 2
1.2.2 Introduction of photosynthesis 3
1.2.3 Pulse amplitude modulation (PAM) fluorometry and PSMT curve of fluorescence induction 11
1.3 Applications 14
Chapter 2 theory and method 17
2.1 Measurement of Chlorophyll a fluorescence by FLMS 17
2.2 The frequency domain and homodyne based fluorescence lifetime measurement system 17
2.2.1 The frequency domain technology 18
2.2.2 The explanation of mathematical formula 18
2.2.3 The homodyne technology 19
2.2.4 Fourier transform 20
2.2.5 Analysis of polar plot 20
2.3 The introduction of MLB FLMS 21
2.3.1 The optical pathways of two different LED emitters 22
2.3.2 The introduction of FPGA 22
2.3.3 Verification of MLB FLMS 23
2.4 Preparation of algae sample for qT experiment 24
2.4.1 Results of NCBI blast for qT factors 24
2.4.2 Growth condition for inducing qT 25
2.4.3 Algae incubation 26
2.4.4 Centrifugation and sealing condensed algae in glass 28
2.5 Preparation of algae sample for qE experiment 28
2.5.1 Results of NCBI blast for qE factors 28
2.5.2 Growth condition for inducing qE 29
Chapter 3 Results of qT and qE experiment 31
3.1 Design of qT experiment 31
3.2 Results of qT experiment 31
3.3 Design of qE experiment 35
3.4 Results of qE experiment 36
3.4.1 Comparison of weak blue and red LED illumination 37
3.4.2 Comparison of strong blue and red LED illumination 40
3.4.3 Comparison of weak and strong blue LED illumination 44
3.4.4 Comparison of weak and strong red LED illumination 46
3.4.5 Comparison of white light and strong blue/red LED illumination 47
Chapter 4 Discussion 52
4.1 Discussion of qT experiment 52
4.2 Discussion of qE experiment 53
Chapter 5 Conclusion 58
References 60
Appendix 64
A1 Protein sequences of qT factors 64
A2 Protein sequences of qE factors 67
[1] P. Muller, X. P. Li, and K. K. Niyogi, "Non-photochemical quenching. A response to excess light energy," Plant Physiology, vol. 125, pp. 1558-1566, Apr 2001.
[2] S. Nozue, A. Mukuno, Y. Tsuda, T. Shiina, M. Terazima, and S. Kumazaki, "Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power," Biochimica Et Biophysica Acta-Bioenergetics, vol. 1857, pp. 46-59, Jan 2016.
[3] M. Y. Masakazu Iwai, Noriko Inada, and Jun Minagawa, "Live-cell imaging of photosystem II antenna dissociation during state transitions," Plant biology, vol. 107, pp. 2337-2342, 2009.
[4] G. Nagy, R. Unnep, O. Zsiros, R. Tokutsu, K. Takizawa, L. Porcar, et al., "Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo," Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 5042-5047, Apr 2014.
[5] D. Petroutsos, R. Tokutsu, S. Maruyama, S. Flori, A. Greiner, L. Magneschi, et al., "A blue-light photoreceptor mediates the feedback regulation of photosynthesis," Nature, vol. 537, pp. 563-+, Sep 22 2016.
[6] E. Erickson, S. Wakao, and K. K. Niyogi, "Light stress and photoprotection in Chlamydomonas reinhardtii," Plant J, vol. 82, pp. 449-65, May 2015.
[7] S. Y. Chiu, C. Y. Kao, C. H. Chen, T. C. Kuan, S. C. Ong, and C. S. Lin, "Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor," Bioresour Technol, vol. 99, pp. 3389-96, Jun 2008.
[8] P. C. S. a. R. M. Clegg, "Rapid acquisition, analysis, and display of fluorescence
lifetime-resolved images for real-time applications," Sci. Instrum., vol. 68, pp. 4107-4119, August 1997.
[9] G. I. Redford and R. M. Clegg, "Polar plot representation for frequency-domain analysis of fluorescence lifetimes," Journal of Fluorescence, vol. 15, pp. 805-815, Sep 2005.
[10] M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, et al., "Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii," J Biol Chem, vol. 291, pp. 7334-46, Apr 01 2016.
[11] R. Tokutsu and J. Minagawa, "Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii," Proc Natl Acad Sci U S A, vol. 110, pp. 10016-21, Jun 11 2013.
[12] K. Amarnath, J. Zaks, S. D. Park, K. K. Niyogi, and G. R. Fleming, "Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of Chlamydomonas reinhardtii," Proc Natl Acad Sci U S A, vol. 109, pp. 8405-10, May 29 2012.
[13] S. Matsubara, Y. C. Chen, R. Caliandro, Govindjee, and R. M. Clegg, "Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching," J Photochem Photobiol B, vol. 104, pp. 271-84, Jul-Aug 2011.
[14] J. Minagawa, "State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast," Biochim Biophys Acta, vol. 1807, pp. 897-905, Aug 2011.
[15] J. Minagawa and R. Tokutsu, "Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii," Plant J, vol. 82, pp. 413-28, May 2015.
[16] G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, et al., "Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii," PLoS Biol, vol. 9, p. e1000577, Jan 18 2011.
[17] H. Xue, R. Tokutsu, S. V. Bergner, M. Scholz, J. Minagawa, and M. Hippler, "Photosystem II subunit R is required for efficient binding of light harvesting complex stress-related protein 3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii," Plant Physiol, vol. 167, pp. 1566-78, Apr 2015.
[18] S. Maruyama, R. Tokutsu, and J. Minagawa, "Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii," Plant Cell Physiol, vol. 55, pp. 1304-10, Jul 2014.
[19] B. Drop, M. Webber-Birungi, S. K. Yadav, A. Filipowicz-Szymanska, F. Fusetti, E. J. Boekema, et al., "Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii," Biochim Biophys Acta, vol. 1837, pp. 63-72, Jan 2014.
[20] Wei Fang, "Current Status and Development of Plant Factory with Artificial Light in Taiwan," 精密設施工程與植物工場實用化技術研討會專輯, pp. 16-24, 2012.
[21] Maxwell, John, “Measurements with the Dual-PAM-100 (PSII + PSI)” 2000.
[22] Electron transport chain https://en.wikipedia.org/wiki/Electron_transport_chain
[23] 台灣光電行業大佬搶占植物工廠 LED照明企業如何把握機遇?
https://read01.com/zh-tw/e5kPeK.html#.Wbt7obpuLIu
[24] https://www.facebook.com/notes/台灣植物工廠產業發展協會/世界第一座大型 自動化植物工廠正式開工預計2017年底完工可日產3萬株菜/1346424872100725/
[25] BIQ House+Solarleaf-the use of microalgae. http://www.feem.it
[26] Technology Kameoka Plant’s Performance http://spread.co.jp/en/technology/
[27] The Calvin Cycle
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/
photosynthesis-8/the-light-independent-reactions-of-photosynthesis-82/the-calvin-cycle-377-11603/
[28] G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, "The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint," Photosynth Res, vol. 94, pp. 275-90, Nov-Dec 2007.
[29] O. Ebenhoh, G. Fucile, G. Finazzi, J. D. Rochaix, and M. Goldschmidt-Clermont, "Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model," Philos Trans R Soc Lond B Biol Sci, vol. 369, p. 20130223, Apr 19 2014.
[30] S. Kodru, T. Malavath, E. Devadasu, S. Nellaepalli, A. Stirbet, R. Subramanyam, et al., "The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii," Photosynth Res, vol. 125, pp. 219-31, Aug 2015.
[31] E. Darko, P. Heydarizadeh, B. Schoefs, and M. R. Sabzalian, "Photosynthesis under artificial light: the shift in primary and secondary metabolism," Philos Trans R Soc Lond B Biol Sci, vol. 369, p. 20130243, Apr 19 2014.
[32] S. Berteotti, M. Ballottari, and R. Bassi, "Increased biomass productivity in green algae by tuning non-photochemical quenching," Sci Rep, vol. 6, p. 21339, Feb 18 2016.
[33] Z. Perrine, S. Negi, and R. T. Sayre, "Optimization of photosynthetic light energy utilization by microalgae," Algal Research-Biomass Biofuels and Bioproducts, vol. 1, pp. 134-142, Oct 2012.
[34] C.H. Liu, F.E. Yu, C. M. Hsieh, C. F. Hsieh “Application of Algae to Energy and Bio-materials” Hsin Hsin Quarterly vol.42 pp. 65-75 Jan, 2014
[35] 陳佳旻, 郭喜溱, 王心(馬令)“藻出能源,發電我最行-探討影響藻類電池發電
效率之影響”中華民國第53屆中小學科學展覽會作品說明書,2013
[36] X. A. Walter, J. Greenman, B. Taylor, and I. A. Ieropoulos, "Microbial fuel cells continuously fuelled by untreated fresh algal biomass," Algal research-biomass biofuels and bioproducts, vol. 11, pp. 103-107, Sep 2015.
[37] C. Unlu, B. Drop, R. Croce, and H. van Amerongen, "State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I," Proc Natl Acad Sci U S A, vol. 111, pp. 3460-5, Mar 04 2014.
[38] FPGA簡介,程式人雜誌, Aus, 2014 http://programmermagazine.github.io/201408/htm/focus1.html
[39] K. Maxwell and G. N. Johnson, "Chlorophyll fluorescence--a practical guide," J Exp Bot, vol. 51, pp. 659-68, Apr 2000.
[40] Ikea’s Space10 develops the Algae Dome, a prototype for food-producing architecture https://www.curbed.com/2017/9/5/16256720/ikea-space-10-algae-dome
[41] 二氧化碳減量排放:二氧化碳再利用–微藻養殖https://scitechvista.nat.gov.tw/c/BMns.htm
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔