|
[1] P. Muller, X. P. Li, and K. K. Niyogi, "Non-photochemical quenching. A response to excess light energy," Plant Physiology, vol. 125, pp. 1558-1566, Apr 2001. [2] S. Nozue, A. Mukuno, Y. Tsuda, T. Shiina, M. Terazima, and S. Kumazaki, "Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power," Biochimica Et Biophysica Acta-Bioenergetics, vol. 1857, pp. 46-59, Jan 2016. [3] M. Y. Masakazu Iwai, Noriko Inada, and Jun Minagawa, "Live-cell imaging of photosystem II antenna dissociation during state transitions," Plant biology, vol. 107, pp. 2337-2342, 2009. [4] G. Nagy, R. Unnep, O. Zsiros, R. Tokutsu, K. Takizawa, L. Porcar, et al., "Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo," Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 5042-5047, Apr 2014. [5] D. Petroutsos, R. Tokutsu, S. Maruyama, S. Flori, A. Greiner, L. Magneschi, et al., "A blue-light photoreceptor mediates the feedback regulation of photosynthesis," Nature, vol. 537, pp. 563-+, Sep 22 2016. [6] E. Erickson, S. Wakao, and K. K. Niyogi, "Light stress and photoprotection in Chlamydomonas reinhardtii," Plant J, vol. 82, pp. 449-65, May 2015. [7] S. Y. Chiu, C. Y. Kao, C. H. Chen, T. C. Kuan, S. C. Ong, and C. S. Lin, "Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor," Bioresour Technol, vol. 99, pp. 3389-96, Jun 2008. [8] P. C. S. a. R. M. Clegg, "Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications," Sci. Instrum., vol. 68, pp. 4107-4119, August 1997. [9] G. I. Redford and R. M. Clegg, "Polar plot representation for frequency-domain analysis of fluorescence lifetimes," Journal of Fluorescence, vol. 15, pp. 805-815, Sep 2005. [10] M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, et al., "Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii," J Biol Chem, vol. 291, pp. 7334-46, Apr 01 2016. [11] R. Tokutsu and J. Minagawa, "Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii," Proc Natl Acad Sci U S A, vol. 110, pp. 10016-21, Jun 11 2013. [12] K. Amarnath, J. Zaks, S. D. Park, K. K. Niyogi, and G. R. Fleming, "Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of Chlamydomonas reinhardtii," Proc Natl Acad Sci U S A, vol. 109, pp. 8405-10, May 29 2012. [13] S. Matsubara, Y. C. Chen, R. Caliandro, Govindjee, and R. M. Clegg, "Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching," J Photochem Photobiol B, vol. 104, pp. 271-84, Jul-Aug 2011. [14] J. Minagawa, "State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast," Biochim Biophys Acta, vol. 1807, pp. 897-905, Aug 2011. [15] J. Minagawa and R. Tokutsu, "Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii," Plant J, vol. 82, pp. 413-28, May 2015. [16] G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, et al., "Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii," PLoS Biol, vol. 9, p. e1000577, Jan 18 2011. [17] H. Xue, R. Tokutsu, S. V. Bergner, M. Scholz, J. Minagawa, and M. Hippler, "Photosystem II subunit R is required for efficient binding of light harvesting complex stress-related protein 3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii," Plant Physiol, vol. 167, pp. 1566-78, Apr 2015. [18] S. Maruyama, R. Tokutsu, and J. Minagawa, "Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii," Plant Cell Physiol, vol. 55, pp. 1304-10, Jul 2014. [19] B. Drop, M. Webber-Birungi, S. K. Yadav, A. Filipowicz-Szymanska, F. Fusetti, E. J. Boekema, et al., "Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii," Biochim Biophys Acta, vol. 1837, pp. 63-72, Jan 2014. [20] Wei Fang, "Current Status and Development of Plant Factory with Artificial Light in Taiwan," 精密設施工程與植物工場實用化技術研討會專輯, pp. 16-24, 2012. [21] Maxwell, John, “Measurements with the Dual-PAM-100 (PSII + PSI)” 2000. [22] Electron transport chain https://en.wikipedia.org/wiki/Electron_transport_chain [23] 台灣光電行業大佬搶占植物工廠 LED照明企業如何把握機遇? https://read01.com/zh-tw/e5kPeK.html#.Wbt7obpuLIu [24] https://www.facebook.com/notes/台灣植物工廠產業發展協會/世界第一座大型 自動化植物工廠正式開工預計2017年底完工可日產3萬株菜/1346424872100725/ [25] BIQ House+Solarleaf-the use of microalgae. http://www.feem.it [26] Technology Kameoka Plant’s Performance http://spread.co.jp/en/technology/ [27] The Calvin Cycle https://www.boundless.com/biology/textbooks/boundless-biology-textbook/ photosynthesis-8/the-light-independent-reactions-of-photosynthesis-82/the-calvin-cycle-377-11603/ [28] G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, "The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint," Photosynth Res, vol. 94, pp. 275-90, Nov-Dec 2007. [29] O. Ebenhoh, G. Fucile, G. Finazzi, J. D. Rochaix, and M. Goldschmidt-Clermont, "Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model," Philos Trans R Soc Lond B Biol Sci, vol. 369, p. 20130223, Apr 19 2014. [30] S. Kodru, T. Malavath, E. Devadasu, S. Nellaepalli, A. Stirbet, R. Subramanyam, et al., "The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii," Photosynth Res, vol. 125, pp. 219-31, Aug 2015. [31] E. Darko, P. Heydarizadeh, B. Schoefs, and M. R. Sabzalian, "Photosynthesis under artificial light: the shift in primary and secondary metabolism," Philos Trans R Soc Lond B Biol Sci, vol. 369, p. 20130243, Apr 19 2014. [32] S. Berteotti, M. Ballottari, and R. Bassi, "Increased biomass productivity in green algae by tuning non-photochemical quenching," Sci Rep, vol. 6, p. 21339, Feb 18 2016. [33] Z. Perrine, S. Negi, and R. T. Sayre, "Optimization of photosynthetic light energy utilization by microalgae," Algal Research-Biomass Biofuels and Bioproducts, vol. 1, pp. 134-142, Oct 2012. [34] C.H. Liu, F.E. Yu, C. M. Hsieh, C. F. Hsieh “Application of Algae to Energy and Bio-materials” Hsin Hsin Quarterly vol.42 pp. 65-75 Jan, 2014 [35] 陳佳旻, 郭喜溱, 王心(馬令)“藻出能源,發電我最行-探討影響藻類電池發電 效率之影響”中華民國第53屆中小學科學展覽會作品說明書,2013 [36] X. A. Walter, J. Greenman, B. Taylor, and I. A. Ieropoulos, "Microbial fuel cells continuously fuelled by untreated fresh algal biomass," Algal research-biomass biofuels and bioproducts, vol. 11, pp. 103-107, Sep 2015. [37] C. Unlu, B. Drop, R. Croce, and H. van Amerongen, "State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I," Proc Natl Acad Sci U S A, vol. 111, pp. 3460-5, Mar 04 2014. [38] FPGA簡介,程式人雜誌, Aus, 2014 http://programmermagazine.github.io/201408/htm/focus1.html [39] K. Maxwell and G. N. Johnson, "Chlorophyll fluorescence--a practical guide," J Exp Bot, vol. 51, pp. 659-68, Apr 2000. [40] Ikea’s Space10 develops the Algae Dome, a prototype for food-producing architecture https://www.curbed.com/2017/9/5/16256720/ikea-space-10-algae-dome [41] 二氧化碳減量排放:二氧化碳再利用–微藻養殖https://scitechvista.nat.gov.tw/c/BMns.htm
|