(3.215.180.226) 您好!臺灣時間:2021/03/09 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周易宏
研究生(外文):Chou, Yi-Hung
論文名稱:以代理人為基礎之合作型任務人群模擬系統
論文名稱(外文):A crowd simulation system for agent-based cooperative tasks
指導教授:黃世強
口試日期:2017-10-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:47
中文關鍵詞:人群模擬以代理人為基礎合作型任務
外文關鍵詞:crowd simulationagent-basedcooperative tasks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個新的人群模擬方法來處理關於代理人群間合作型任務。
我們的架構包含了兩種代理人,行人與工作者。
合作型任務需要兩人以上的工作者同時的對目標物件實施指定之動作以合力完成指定之作業。
在我們的架構中,包含了一些基本的合作行為,例如:將障礙物推離、將貨物抬起並搬至目的地、利用繩子拖動物件。
利用指定工作者們各種基本的合作行為,便可以拼湊出一個較為複雜的連續或者平行執行的任務。
我們模擬出了當工作者們加入或離開合作型任務時所該有的適當隊形變化,還有移動物件時繞離障礙物的行為,也對於行人模擬出了碰撞避免與讓路的情形。
我們的架構也將會對於工作者們融入能量消耗的概念以達成多元化的結果。
我們演示了各種不同合作型任務的範例。我們的架構可用於電影製作、人群逃生模擬、故事敘事系統、事件規劃與電子遊戲中。
This thesis presents a novel agent-based approach to handling cooperative tasks in crowd simulation. Our framework consists of two kinds of agents: pedestrians and workers. A cooperative task requires two or more workers to simultaneously perform actions on objects. The workers should cooperate with each other to finish the task. This framework considers several basic cooperative behaviors including pushing obstacles away from blocked exits, lifting cargos and carrying them to a destination, and pulling objects using ropes. A complex task may be decomposed into several simple tasks and the simple tasks are finished either in a sequential or parallel order. Our framework also simulates crowd behaviors such as workers joining and leaving cooperative tasks, moving objects around obstacles, collision avoidance for pedestrians, and way giving. Our framework incorporates energy consumption for the workers, thereby generating diversified outcomes. We demonstrate examples for simulating different cooperative behaviors. Our framework can be applied to movies, crowd evacuation, narrative systems, task planning simulation and games.
摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables xiv
List of Algorithms xv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . 3
2 Related Work 5
2.1 Agent-based simulation. . . . . . . . . . .5
2.2 Data-driven approaches. . . . . . . . . . .6
2.3 Continuum-based and hybrid techniques. . . 7
2.4 Low level interactions. . . . . . . . . . .8
2.5 Applications. . . . . . . . . . . . . . . .8
3 System Overview 10
4 Preliminaries and Notations 12
4.0.1 Simulation loop . . . . . . . . . . . . .13
5 Cooperative Tasks 16
5.0.1 Pushing objects . . . . . . . . . . . . .16
5.0.2 Pushing an object around an external point. . 17
5.0.3 Pulling objects with handles . . . . . .18
5.0.4 Pulling objects with ropes . . . . . . .19
5.0.5 Carrying objects . . . . . . . . . . . .19
5.0.6 Other issues . . . . . . . . . . . . . .20
6 Experiments and Results 23
6.0.1 Limitations . . . . . . . . . . . . . . 27
7 Conclusion 40
Bibliography 42
[ABF06] Ernesto L Andrade, Scott Blunsden, and Robert B Fisher. Hidden markov
models for optical flow analysis in crowds. In Pattern Recognition, 2006. 18th International Conference on, volume 1, pages 460–463, 2006.
[ARC13] João Emílio Almeida, Rosaldo J. F. Rossetti, and António Leça Coelho. Crowd simulation modeling applied to emergency and evacuation simulations using multi-agent systems. CoRR, abs/1303.4692, 2013.
[BKM16] Aniket Bera, Sujeong Kim, and Dinesh Manocha. Online parameter learning for data-driven crowd simulation and content generation. Computers & Graphics, 55:68–79, 2016.
[CG98] Animesh Chakravarthy and Debasish Ghose. Obstacle avoidance in a dynamic environment: A collision cone approach. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 28(5): 562–574, 1998.
[CWW+13] Dan Chen, Lizhe Wang, Xiaomin Wu, Jingying Chen, Samee U Khan, Joanna Kołodziej, Mingwei Tian, Fang Huang, and Wangyang Liu. Hybrid modelling and simulation of huge crowd over a hierarchical grid architecture. Future Generation Computer Systems, 29(5):1309–1317, 2013.
[CZGM13] Sean Curtis, Basim Zafar, Adnan Gutub, and Dinesh Manocha. Right of way. The Visual Computer, 29(12):1277–1292, 2013.
[DPCN+14] TB Dutra, G Priem, JB Cavalcante-Neto, CA Vidal, and J Pettré. Synthetic vision-based crowd simulation: reactive vs. reactive planning approaches. In Proceedings of the 27th Conference on Computer Animation and Social Agents (CASA 2014), pages 1–4, 2014.
[GCC+10] Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin, and Dinesh Manocha. Pledestrians: A least-effort approach to crowd simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 119–128, 2010.
[GNL13] Abhinav Golas, Rahul Narain, and Ming Lin. Hybrid long-range collision avoidance for crowd simulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 29–36, 2013.
[HM95] Dirk Helbing and Petér Molnár. Social force model for pedestrian dynamics. Physical review E, 51:4282–4286, 1995.
[HUB+17] Brandon Haworth, Muhammad Usman, Glen Berseth, Mahyar Khayatkhoei, Mubbasir Kapadia, and Petros Faloutsos. Code: Crowdoptimized design of environments. Computer Animation and Virtual Worlds, 2017.
[Hug02] Roger L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507 – 535, 2002.
[KGM13] Sujeong Kim, Stephen J. Guy, and Dinesh Manocha. Velocity-based modeling of physical interactions in multi-agent simulations. In Proceedings
of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 125–133, 2013.
[KGM17] Kurtulus Kullu, Uğur Güdükbay, and Dinesh Manocha. Acmics: an agent communication model for interacting crowd simulation. Autonomous Agents and Multi-Agent Systems, 2017.
[KO08] Ioannis Karamouzas and Mark H. Overmars. Adding variation to path planning. Computer Animation and Virtual Worlds, 19(3-4):283–293, 2008.
[KSG14] Ioannis Karamouzas, Brian Skinner, and Stephen J. Guy. Universal power law governing pedestrian interactions. Phys. Rev. Lett., 113:238701, 2014.
[KSHF09] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Egocentric affordance fields in pedestrian steering. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pages 215–223, 2009.
[KSS+16] Mubbasir Kapadia, Alexander Shoulson, Cyril Steimer, Samuel Oberholzer, Robert W. Sumner, and Markus Gross. An event-centric approach to authoring stories in crowds. In Proceedings of the 9th International Conference on Motion in Games, pages 15–24, 2016.
[LCHL07] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee Lee. Group behavior from video: a data-driven approach to crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 109–118, 2007.
[LPFdL11] R. Limberger, C. T. Pozzer, B. Feijo, and E. S. d. Lima. Supporting characters in interactive storytelling. In 2011 Brazilian Symposium on Games and Digital Entertainment, pages 241–249, 2011.
[LSD14] Hongsong Li, Ting Song, and Gangyi Ding. An interactive authoring and simulation system for large-scale artistic performances. In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), pages 1355–1358, 2014.
[LW16] Fu-Shun Li and Sai-Keung Wong. Animating agents based on radial view in crowd simulation. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pages 101–109, 2016.
[MT97] S. R. Musse and D. Thalmann. A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis, pages 39–51. Springer Vienna, 1997.
[NIK+03] Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman. Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20:379–404, 2003.
[NLS14] Aline Normoyle, Maxim Likhachev, and Alla Safonova. Stochastic activity authoring with direct user control. In Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 31–38, 2014.
[OPOD10] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane Donikian. A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics, 29(4):123:1–123:9, 2010.
[SGJ+11] Alexander Shoulson, Francisco M. Garcia, Matthew Jones, Robert Mead, and Norman I. Badler. Parameterizing Behavior Trees, pages 144–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[SGKB13] Alexander Shoulson, Max L. Gilbert, Mubbasir Kapadia, and Norman I. Badler. An event-centric planning approach for dynamic real-time narrative. In Proceedings of Motion on Games, pages 99:121–99:130, 2013.
[SH17] Ibraheem Sakour and Huosheng Hu. Robot-assisted crowd evacuation under emergency situations: A survey. Robotics, 6(2), 2017.
[SKH+11] Shawn Singh, Mubbasir Kapadia, Billy Hewlett, Glenn Reinman, and Petros Faloutsos. A modular framework for adaptive agent-based steering. In Symposium on Interactive 3D Graphics and Games, pages 141–150, 2011.
[SKRF11] Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. Footstep navigation for dynamic crowds. Computer Animation and Virtual Worlds, 22(2-3):151–158, 2011.
[TCP06] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. ACM Transactions on Graphics, 25(3):1160–1168, 2006.
[TN01] Yusuke Tajima and Takashi Nagatani. Scaling behavior of crowd flow outside a hall. Physica A: Statistical Mechanics and its Applications, 292(1): 545–554, 2001.
[Tor12] Paul M. Torrens. Moving agent pedestrians through space and time. Annals of the Association of American Geographers, 102(1):35–66, 2012.
[TWCL17] Tsung-Yu Tsai, Sai-Keung Wong, Yi-Hung Chou, and Guan-Wen Lin. Directing virtual crowds based on dynamic adjustment of navigation fields. Computer Animation and Virtual Worlds, 2017.
[VdBLM08] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time multi-agent navigation. In Robotics and Automation, 2008. IEEE International Conference on, pages 1928–1935, 2008.
[VdBSGM11] Jur Van den Berg, Jamie Snape, Stephen J Guy, and Dinesh Manocha. Reciprocal collision avoidance with acceleration-velocity obstacles. In Robotics and Automation (ICRA), IEEE International Conference on, pages 3475–3482, 2011.
[WLP16] David Wolinski, Ming C. Lin, and Julien Pettré. Warpdriver: Contextaware
probabilistic motion prediction for crowd simulation. ACM Trans. Graph., 35(6):164:1–164:11, 2016.
[WS15] Zijian Wang and Mac Schwager. Multi-robot manipulation with no communication using only local measurements. In Decision and Control(CDC), 2015 IEEE 54th Annual Conference on IEEE, pages 380–385, 2015.
[WTL+15] Sai-Keung Wong, Pao-Kun Tang, Fu-Shun Li, Zong-Min Wang, and Shih- Ting Yu. Guidance path scheduling using particle swarm optimization in crowd simulation. Computer Animation and Virtual Worlds, 26(3-4):387– 395, 2015.
[WWTT16] Sai-Keung Wong, Yu-Shuen Wang, Pao-Kun Tang, and Tsung-Yu Tsai. Optimized Route for Crowd Evacuation. In Pacific Graphics Short Papers, 2016.
[WWTT17] Sai-Keung Wong, Yu-Shuen Wang, Pao-Kun Tang, and Tsung-Yu Tsai. Optimized evacuation route based on crowd simulation. Computational Visual Media, 3(3):243–261, Sep 2017.
[YCP+08] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D. Manocha, and M. Lin. Omposite agents. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 39–47, 2008.
[YZL10] L. Yang, K. Zhu, and S. Liu. Cellular automata evacuation model considering information transfer in building with obstacles. In Richard D. Peacock, Erica.D. Kuligowski, and Jason D. Averill, editors, Pedestrain Dynamics and Evacuation. Springer, 2010.
[ZIK11] F. Zanlungo, T. Ikeda, and T. Kanda. Social force model with explicit collision prediction. Europhysics Letters, 93(6):68005:1–6, 2011.
電子全文 電子全文(網際網路公開日期:20221113)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔